MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Analysis of deterministic and geostatistical interpolation techniques for mapping meteorological variables at large watershed scales
Analysis of deterministic and geostatistical interpolation techniques for mapping meteorological variables at large watershed scales
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Analysis of deterministic and geostatistical interpolation techniques for mapping meteorological variables at large watershed scales
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Analysis of deterministic and geostatistical interpolation techniques for mapping meteorological variables at large watershed scales
Analysis of deterministic and geostatistical interpolation techniques for mapping meteorological variables at large watershed scales

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Analysis of deterministic and geostatistical interpolation techniques for mapping meteorological variables at large watershed scales
Analysis of deterministic and geostatistical interpolation techniques for mapping meteorological variables at large watershed scales
Journal Article

Analysis of deterministic and geostatistical interpolation techniques for mapping meteorological variables at large watershed scales

2019
Request Book From Autostore and Choose the Collection Method
Overview
The widely scattered pattern of meteorological stations in large watersheds and remote locations, along with a need to estimate meteorological data for point sites or areas where little or no data have been recorded, has encouraged the development and implementation of spatial interpolation techniques. The various interpolation techniques featured in GIS software allow for the extraction of this new information from spatially distinct point data. Since no one interpolation method can be accurate in all regions, each method must be evaluated prior to each geographically distinct application. Many methods have been used for interpolating minimum temperature (Tmin), maximum temperature (Tmax) and precipitation data, and few have been used in the Zayandeh-Rud River basin, Iran, and no comparison of methods has ever been carried out in the area. The accuracies of six spatial interpolation methods [Inverse Distance Weighting, Natural Neighbor (NN), Regularized Spline, Tension Spline, Ordinary Kriging, Universal Kriging] were compared in this study simultaneously, and the best method for mapping monthly precipitation and temperature extremes was determined in a large semi-arid watershed with high temperature and rainfall variation. A cross-validation technique and long-term (1970–2014) average monthly Tmin, Tmax and precipitation data from meteorological stations within the basin were used to identify the best interpolation method for each variable dataset. For Tmin, Kriging (Gaussian) proved to be the most accurate interpolation method (MAE = 1.827 °C), whereas, for Tmax and precipitation the NN method performed best (MAE = 1.178 °C and 0.5241 mm, respectively). Accordingly, these variable-optimized interpolation methods were used to define spatial patterns of newly generated climatic maps.