MbrlCatalogueTitleDetail

Do you wish to reserve the book?
The use of support vector machine, neural network, and regression analysis to predict and optimize surface roughness and cutting forces in milling
The use of support vector machine, neural network, and regression analysis to predict and optimize surface roughness and cutting forces in milling
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
The use of support vector machine, neural network, and regression analysis to predict and optimize surface roughness and cutting forces in milling
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
The use of support vector machine, neural network, and regression analysis to predict and optimize surface roughness and cutting forces in milling
The use of support vector machine, neural network, and regression analysis to predict and optimize surface roughness and cutting forces in milling

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
The use of support vector machine, neural network, and regression analysis to predict and optimize surface roughness and cutting forces in milling
The use of support vector machine, neural network, and regression analysis to predict and optimize surface roughness and cutting forces in milling
Journal Article

The use of support vector machine, neural network, and regression analysis to predict and optimize surface roughness and cutting forces in milling

2019
Request Book From Autostore and Choose the Collection Method
Overview
In the present study, prediction and optimization of the surface roughness and cutting forces in slot milling of aluminum alloy 7075-T6 were pursued by taking advantage of regression analysis, support vector regression (SVR), artificial neural network (ANN), and multi-objective genetic algorithm. The effects of process parameters, including cutting speed, feed per tooth, depth of cut, and tool type, on the responses were investigated by the analysis of variance (ANOVA). Grid search and cross-validation methods were used for hyperparameter tuning and to find the best ANN and SVR models. The training algorithm of developed NNs was one of the hyperparameters which was chosen from Levenberg-Marquardt and RMSprop algorithms. The performance of regression, SVR, and ANN models were compared with each other corresponding to each machining response studied. The ANN models were integrated with the non-dominated sorting genetic algorithm (NSGA-II) to find the optimum solutions by means of minimizing the surface roughness and cutting forces. In addition, the desirability function approach was utilized to select proper solutions from the statistical tools.