MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Deep recurrent residual channel attention network for single image super-resolution
Deep recurrent residual channel attention network for single image super-resolution
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Deep recurrent residual channel attention network for single image super-resolution
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Deep recurrent residual channel attention network for single image super-resolution
Deep recurrent residual channel attention network for single image super-resolution

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Deep recurrent residual channel attention network for single image super-resolution
Deep recurrent residual channel attention network for single image super-resolution
Journal Article

Deep recurrent residual channel attention network for single image super-resolution

2024
Request Book From Autostore and Choose the Collection Method
Overview
The models based on convolutional neural network have achieved excellent results in image super-resolution by acquiring prior knowledge from a large number of images, but such models still have problems such as the features between layers in the depth network cannot be effectively fused, the number of parameters is too large, and cross-channel feature learning is impossible. Based on this, a deep recursive residual channel attention network (DRRCAN) model was proposed in this paper. To solve the problem that the information between different layers in the deep network cannot be fused effectively, this paper constructs a channel feature fusion module, which can effectively fuse the feature information of different layers. To solve the problem that the parameters increase sharply due to the increase of network depth, recursive blocks are adopted in this paper, which greatly reduces the number of parameters in the deep network. The channel attention is integrated to enable the model to learn features across channels. In addition, to avoid gradient explosion or disappearance, residual modules, long skip connections are introduced to improve the stability and generalization ability of the model. Extensive benchmark evaluations validate the superiority of the proposed DRRCAN model compared with existing algorithms.