MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Lower bounds for finding stationary points I
Lower bounds for finding stationary points I
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Lower bounds for finding stationary points I
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Lower bounds for finding stationary points I
Lower bounds for finding stationary points I

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Lower bounds for finding stationary points I
Lower bounds for finding stationary points I
Journal Article

Lower bounds for finding stationary points I

2020
Request Book From Autostore and Choose the Collection Method
Overview
We prove lower bounds on the complexity of finding ϵ-stationary points (points x such that ‖∇f(x)‖≤ϵ) of smooth, high-dimensional, and potentially non-convex functions f. We consider oracle-based complexity measures, where an algorithm is given access to the value and all derivatives of f at a query point x. We show that for any (potentially randomized) algorithm A, there exists a function f with Lipschitz pth order derivatives such that A requires at least ϵ-(p+1)/p queries to find an ϵ-stationary point. Our lower bounds are sharp to within constants, and they show that gradient descent, cubic-regularized Newton’s method, and generalized pth order regularization are worst-case optimal within their natural function classes.