MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Composite wave models for elastic plates
Composite wave models for elastic plates
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Composite wave models for elastic plates
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Composite wave models for elastic plates
Composite wave models for elastic plates

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Composite wave models for elastic plates
Composite wave models for elastic plates
Journal Article

Composite wave models for elastic plates

2018
Request Book From Autostore and Choose the Collection Method
Overview
The long-term challenge of formulating an asymptotically motivated wave theory for elastic plates is addressed. Composite two-dimensional models merging the leading or higher-order parabolic equations for plate bending and the hyperbolic equation for the Rayleigh surface wave are constructed. Analysis of numerical examples shows that the proposed approach is robust not only at low- and high-frequency limits but also over the intermediate frequency range.