MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Characterization and properties of plywood bioadhesive derived from cottonseed protein and sawdust cellulose
Characterization and properties of plywood bioadhesive derived from cottonseed protein and sawdust cellulose
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Characterization and properties of plywood bioadhesive derived from cottonseed protein and sawdust cellulose
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Characterization and properties of plywood bioadhesive derived from cottonseed protein and sawdust cellulose
Characterization and properties of plywood bioadhesive derived from cottonseed protein and sawdust cellulose

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Characterization and properties of plywood bioadhesive derived from cottonseed protein and sawdust cellulose
Characterization and properties of plywood bioadhesive derived from cottonseed protein and sawdust cellulose
Journal Article

Characterization and properties of plywood bioadhesive derived from cottonseed protein and sawdust cellulose

2022
Request Book From Autostore and Choose the Collection Method
Overview
The development of plant adhesive with good bonding strength, water resistance and thermal stability remains challenging to replace formaldehyde-based adhesive resins that usually release toxic formaldehyde. Herein, an environmentally friendly bioadhesive derived from cottonseed meal waste and cellulose sawdust was successfully prepared, verified by FTIR and X-ray photoelectron spectroscopy detailed analysis. Pretreatment of cottonseed meal and sawdust at mild conditions was made to obtain cottonseed protein, purified and oxidized cellulose. Structure of these treated samples was characterized by particle size distribution, FTIR and wide angle X-ray diffraction. When adding 15% of the oxidized cellulose into cottonseed protein, the dry bonding strength of the resulting adhesive reached 2.4 MPa on average; and the highest wet bonding strength of 1.1 MPa was found when 10% dialdehyde starch was used. The improvements of bonding strength as well as thermal stability of the prepared oxidized cellulose/cottonseed protein adhesives are largely ascribed to the formation of strong chemical bonds and their mechanical interlocking with plywood substrates. Both protein-oxidized cellulose and protein-oxidized starch cross-linking networks are formed in the adhesive system, combining tightly the adhesive components. The biodegradable adhesive fabricated in work provides a new approach for the development of all-biomass derived adhesives with properties comparable to the state-of-the-art protein derived bioadhesives, thus holding great potential as an alternative to formaldehyde-based resins in wood board and indoor panel bonding industries. Graphical abstract