MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Hotter is Easier: Unexpected Temperature Dependence of Spin Qubit Frequencies
Hotter is Easier: Unexpected Temperature Dependence of Spin Qubit Frequencies
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Hotter is Easier: Unexpected Temperature Dependence of Spin Qubit Frequencies
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Hotter is Easier: Unexpected Temperature Dependence of Spin Qubit Frequencies
Hotter is Easier: Unexpected Temperature Dependence of Spin Qubit Frequencies

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Hotter is Easier: Unexpected Temperature Dependence of Spin Qubit Frequencies
Hotter is Easier: Unexpected Temperature Dependence of Spin Qubit Frequencies
Journal Article

Hotter is Easier: Unexpected Temperature Dependence of Spin Qubit Frequencies

2023
Request Book From Autostore and Choose the Collection Method
Overview
As spin-based quantum processors grow in size and complexity, maintaining high fidelities and minimizing crosstalk will be essential for the successful implementation of quantum algorithms and error-correction protocols. In particular, recent experiments have highlighted pernicious transient qubit frequency shifts associated with microwave qubit driving. Work-arounds for small devices, including prepulsing with an off-resonant microwave burst to bring a device to a steady state, wait times prior to measurement, and qubit-specific calibrations all bode ill for device scalability. Here, we make substantial progress in understanding and overcoming this effect. We report a surprising nonmonotonic relation between mixing chamber temperature and spin Larmor frequency which is consistent with observed frequency shifts induced by microwave and baseband control signals. We find that purposefully operating the device at 200 mK greatly suppresses the adverse heating effect while not compromising qubit coherence or single-qubit fidelity benchmarks. Furthermore, systematic non-Markovian crosstalk is greatly reduced. Our results provide a straightforward means of improving the quality of multispin control while simplifying calibration procedures for future spin-based quantum processors.
Publisher
American Physical Society

MBRLCatalogueRelatedBooks