MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Characterisation of a Cs–Implanted Cu Photocathode
Characterisation of a Cs–Implanted Cu Photocathode
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Characterisation of a Cs–Implanted Cu Photocathode
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Characterisation of a Cs–Implanted Cu Photocathode
Characterisation of a Cs–Implanted Cu Photocathode

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Characterisation of a Cs–Implanted Cu Photocathode
Characterisation of a Cs–Implanted Cu Photocathode
Journal Article

Characterisation of a Cs–Implanted Cu Photocathode

2024
Request Book From Autostore and Choose the Collection Method
Overview
The generation of high-brightness electron beams is a crucial area of particle accelerator research and development. Photocathodes which offer high levels of quantum efficiency when illuminated at visible wavelengths are attractive as the drive laser technology is greatly simplified. The higher laser power levels available at longer wavelengths create headroom allowing use of manipulation techniques to optimise the longitudinal and transverse beam profiles, and so minimise electron beam emittance. Bi–alkali photocathodes which offer quantum efficiency ∼ 10 % under illumination at 532 nm are an example of this. Another solution is the use of modified photoemissive surfaces. Caesium has a low work function and readily photoemits when illuminated at green wavelengths (∼532nm). Caesium oxide has an even lower work function and emits at red wavelengths (∼635nm). We present data on our work to create a hybrid copper photocathode surface modified by implantation of caesium ions, measuring the surface roughness and probing its structure using MEIS. We measure the energy spread of photoemitted electrons, the QE as a function of illumination wavelength, and the practicality of this surface as a photocathode by assessing its lifetime on exposure to oxygen.