MbrlCatalogueTitleDetail

Do you wish to reserve the book?
An ultrahot Neptune in the Neptune desert
An ultrahot Neptune in the Neptune desert
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
An ultrahot Neptune in the Neptune desert
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
An ultrahot Neptune in the Neptune desert
An ultrahot Neptune in the Neptune desert

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
An ultrahot Neptune in the Neptune desert
An ultrahot Neptune in the Neptune desert
Journal Article

An ultrahot Neptune in the Neptune desert

2020
Request Book From Autostore and Choose the Collection Method
Overview
About 1 out of 200 Sun-like stars has a planet with an orbital period shorter than one day: an ultrashort-period planet 1 , 2 . All of the previously known ultrashort-period planets are either hot Jupiters, with sizes above 10 Earth radii ( R ⊕ ), or apparently rocky planets smaller than 2  R ⊕ . Such lack of planets of intermediate size (the ‘hot Neptune desert’) has been interpreted as the inability of low-mass planets to retain any hydrogen/helium (H/He) envelope in the face of strong stellar irradiation. Here we report the discovery of an ultrashort-period planet with a radius of 4.6  R ⊕ and a mass of 29  M ⊕ , firmly in the hot Neptune desert. Data from the Transiting Exoplanet Survey Satellite 3 revealed transits of the bright Sun-like star LTT 9779 every 0.79 days. The planet’s mean density is similar to that of Neptune, and according to thermal evolution models, it has a H/He-rich envelope constituting 9.0 − 2.9 + 2.7 % of the total mass. With an equilibrium temperature around 2,000 K, it is unclear how this ‘ultrahot Neptune’ managed to retain such an envelope. Follow-up observations of the planet’s atmosphere to better understand its origin and physical nature will be facilitated by the star’s brightness ( V mag  = 9.8). LTT 9779 b is Neptune-sized planet rotating around its star with a period of 0.79 days and an equilibrium temperature of 2,000 K. It is not clear how it retained its atmospheric envelope, which contains ~10% of H/He, as it should have been photoevaporated by now.
Publisher
Nature Publishing Group UK,Nature Publishing Group