MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Classification of acute lymphoblastic leukaemia using hybrid hierarchical classifiers
Classification of acute lymphoblastic leukaemia using hybrid hierarchical classifiers
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Classification of acute lymphoblastic leukaemia using hybrid hierarchical classifiers
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Classification of acute lymphoblastic leukaemia using hybrid hierarchical classifiers
Classification of acute lymphoblastic leukaemia using hybrid hierarchical classifiers

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Classification of acute lymphoblastic leukaemia using hybrid hierarchical classifiers
Classification of acute lymphoblastic leukaemia using hybrid hierarchical classifiers
Journal Article

Classification of acute lymphoblastic leukaemia using hybrid hierarchical classifiers

2017
Request Book From Autostore and Choose the Collection Method
Overview
In current consequence of haematology, blood cancer i.e. acute lymphoblastic leukemia is very frequently founded in medical practice, which is characterized by over activation and functional abnormality of bone marrow. The abnormality is identified through physical examination with a screening of blood smears. However, this method is error prone and labor intensive task for haematologist. Hence, haematologist needs a specific computer aided diagnostic system (CAD) that can deal with these limitations of prior systems and capable of discriminating immature leukemic cells from mature healthy cells. Thus, this work addresses the problem of segmenting a microscopic blood image into different regions, and then further analyzes those regions for localization of the immature lymphoblast cell. Further, it investigates the use of different geometrical, chromatic and statistical textures features for nucleus as well as cytoplasm and pattern recognition techniques for sub typing immature acute lymphoblasts as per FAB (French– American – British) classification. This can facilitate haematologist for acquiring essential information about prognosis and for an appropriate cure for leukemia. The exhaustive experiments have been conducted on 260 microscopic blood images (i.e. 130 normal and 130 cancerous cells) taken from ALL-IDB database. The proposed techniques consisting of the segmentation module used for segmenting the nucleus and cytoplasm of each leukocyte cell, feature extraction module, feature dimensionality reduction module that uses principal component analysis (PCA) to mapped the higher feature space to lower feature space and classification module that employs the standard classifiers, like support vector machines, smooth support vector machines, k-nearest neighbour, probabilistic neural network and adaptive neuro fuzzy inference system.