Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Usefulness of Global Root Zone Soil Moisture Product for Streamflow Prediction of Ungauged Basins
by
Lee, Okjeong
, Kim, Sangdan
, Choi, Jeonghyeon
, Won, Jeongeun
in
hydrologic models
/ hydrological model calibration
/ model validation
/ prediction
/ remote sensing
/ rhizosphere
/ satellites
/ soil moisture
/ soil moisture active passive satellite mission
/ soil water
/ South Korea
/ stream flow
/ streams
/ temperature
/ uncertainty
/ ungauged basins
2021
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Usefulness of Global Root Zone Soil Moisture Product for Streamflow Prediction of Ungauged Basins
by
Lee, Okjeong
, Kim, Sangdan
, Choi, Jeonghyeon
, Won, Jeongeun
in
hydrologic models
/ hydrological model calibration
/ model validation
/ prediction
/ remote sensing
/ rhizosphere
/ satellites
/ soil moisture
/ soil moisture active passive satellite mission
/ soil water
/ South Korea
/ stream flow
/ streams
/ temperature
/ uncertainty
/ ungauged basins
2021
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Usefulness of Global Root Zone Soil Moisture Product for Streamflow Prediction of Ungauged Basins
by
Lee, Okjeong
, Kim, Sangdan
, Choi, Jeonghyeon
, Won, Jeongeun
in
hydrologic models
/ hydrological model calibration
/ model validation
/ prediction
/ remote sensing
/ rhizosphere
/ satellites
/ soil moisture
/ soil moisture active passive satellite mission
/ soil water
/ South Korea
/ stream flow
/ streams
/ temperature
/ uncertainty
/ ungauged basins
2021
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Usefulness of Global Root Zone Soil Moisture Product for Streamflow Prediction of Ungauged Basins
Journal Article
Usefulness of Global Root Zone Soil Moisture Product for Streamflow Prediction of Ungauged Basins
2021
Request Book From Autostore
and Choose the Collection Method
Overview
Using modelling approaches to predict stream flow from ungauged basins requires new model calibration strategies and evaluation methods that are different from the existing ones. Soil moisture information plays an important role in hydrological applications in basins. Increased availability of remote sensing data presents a significant opportunity to obtain the predictive performance of hydrological models (especially in ungauged basins), but there is still a limit to applying remote sensing soil moisture data directly to models. The Soil Moisture Active Passive (SMAP) satellite mission provides global soil moisture data estimated by assimilating remotely sensed brightness temperature to a land surface model. This study investigates the potential of a hydrological model calibrated using only global root zone soil moisture based on satellite observation when attempting to predict stream flow in ungauged basins. This approach’s advantage is that it is particularly useful for stream flow prediction in ungauged basins since it does not require observed stream flow data to calibrate a model. The modelling experiments were carried out on upstream watersheds of two dams in South Korea with high-quality stream flow data. The resulting model outputs when calibrated using soil moisture data without observed stream flow data are particularly impressive when simulating monthly stream flows upstream of the dams, and daily stream flows also showed a satisfactory level of predictive performance. In particular, the model calibrated using soil moisture data for dry years showed better predictive performance than for wet years. The performance of the model calibrated using soil moisture data was significantly improved under low flow conditions compared to the traditional regionalization approach. Additionally, the overall stream flow was also predicted better. In addition, the uncertainty of the model calibrated using soil moisture was not much different from that of the model calibrated using observed stream flow data, and showed more robust outputs when compared to the traditional regionalization approach. These results prove that the application of the global soil moisture product for predicting stream flows in ungauged basins is promising.
Publisher
MDPI AG
This website uses cookies to ensure you get the best experience on our website.