MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Enzymatic saccharification of peat polysaccharides is limited by accessibility
Enzymatic saccharification of peat polysaccharides is limited by accessibility
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Enzymatic saccharification of peat polysaccharides is limited by accessibility
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Enzymatic saccharification of peat polysaccharides is limited by accessibility
Enzymatic saccharification of peat polysaccharides is limited by accessibility

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Enzymatic saccharification of peat polysaccharides is limited by accessibility
Enzymatic saccharification of peat polysaccharides is limited by accessibility
Journal Article

Enzymatic saccharification of peat polysaccharides is limited by accessibility

2025
Request Book From Autostore and Choose the Collection Method
Overview
Sphagnum peat bogs store a large fraction of biologically-bound carbon, due to a steady accumulation of plant material over millennia. The resistance of Sphagnum biomass to decay is poorly understood and of high importance for preservation efforts and climate models. Sphagnum peat mostly consists of the polysaccharide-rich cell wall of the moss but the mechanisms by which it resist degradation by microbes remain unclear. Here we show that enzymatic saccharification of peat polysaccharides including cellulose and other glucose-rich polysaccharides is predominantly limited by access to the substrate. The experimental approach involved biotechnological tools including hydrothermal pretreatment to disrupt and relocate cell wall components. This physical change was confirmed by confocal laser scanning microscopy. A cocktail of microbial enzymes (Cellic® CTec3) designed for industrial saccharification of lignocellulose of vascular plants was used to assess enzymatic digestibility of peat polysaccharides. The glucose yield increased from close to zero for untreated peat to 30% and 50% when pretreated at 160 and 180 °C. An overall catalytic rate constant for enzymatic glucose-release from peat-cellulose of 26.98 h -1 was calculated using a kinetic model. This is a similar or higher rate compared to cellulose from vascular plant tissues. With an iron content of 2 g/kg dry peat, oxidative inactivation of enzymes is an important factor to take into account. A high inactivation constant of 125.91 x10 -3 h −1 was found for the used saccharification conditions, but the addition of catalase alleviated the oxidative inactivation and increased the glucose yield with 60% in peat pretreated at 180 °C. These findings show that molecular structures of Sphagnum peat which prevents access for cell wall degrading enzymes can be disrupted by hydrothermal pretreatment. This brings us closer to understanding peat recalcitrance and thus how very large amounts of organic carbon is stored.