MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A New Model for Thermodynamic Characterization of Hemoglobin
A New Model for Thermodynamic Characterization of Hemoglobin
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A New Model for Thermodynamic Characterization of Hemoglobin
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A New Model for Thermodynamic Characterization of Hemoglobin
A New Model for Thermodynamic Characterization of Hemoglobin

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A New Model for Thermodynamic Characterization of Hemoglobin
A New Model for Thermodynamic Characterization of Hemoglobin
Journal Article

A New Model for Thermodynamic Characterization of Hemoglobin

2019
Request Book From Autostore and Choose the Collection Method
Overview
In this paper, we formulate a thermodynamic model of hemoglobin that describes, by a physical point of view, phenomena favoring the binding of oxygen to the protein. Our study is based on theoretical methods extrapolated by experimental data. After some remarks on the non-equilibrium thermodynamic theory with internal variables, some thermodynamic functions are determined by the value of the complex dielectric constant. In previous papers, we determined the explicit expression of a dielectric constant as a function of a complex dielectric modulus and frequency. The knowledge of these functions allows a new characterization of the material and leads to the study of new phenomena that has yet to be studied. In detail, we introduce the concept of “hemoglobe”, a model that considers the hemoglobin molecule as a plane capacitor, the dielectric of which is almost entirely constituted by the quaternary structure of the protein. This model is suggested by considering a phenomenological coefficient of the non-equilibrium thermodynamic theory related to the displacement polarization current. The comparison of the capacity determined by the mean of this coefficient, and determined by geometrical considerations, gives similar results; although more thermodynamic information is derived by the capacity determined considering the aforementioned coefficient. This was applied to the normal human hemoglobin, homozygous sickle hemoglobin, and sickle cell hemoglobin C disease. Moreover, the energy of the capacitor of the three hemoglobin was determined. Through the identification of displacement currents, the introduction of this model presents new perspectives and helps to explain hemoglobin functionality through a physical point of view.