MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Benchmarking 4G and 5G-Based Cellular-V2X for Vehicle-to-Infrastructure Communication and Urban Scenarios in Cooperative Intelligent Transportation Systems
Benchmarking 4G and 5G-Based Cellular-V2X for Vehicle-to-Infrastructure Communication and Urban Scenarios in Cooperative Intelligent Transportation Systems
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Benchmarking 4G and 5G-Based Cellular-V2X for Vehicle-to-Infrastructure Communication and Urban Scenarios in Cooperative Intelligent Transportation Systems
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Benchmarking 4G and 5G-Based Cellular-V2X for Vehicle-to-Infrastructure Communication and Urban Scenarios in Cooperative Intelligent Transportation Systems
Benchmarking 4G and 5G-Based Cellular-V2X for Vehicle-to-Infrastructure Communication and Urban Scenarios in Cooperative Intelligent Transportation Systems

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Benchmarking 4G and 5G-Based Cellular-V2X for Vehicle-to-Infrastructure Communication and Urban Scenarios in Cooperative Intelligent Transportation Systems
Benchmarking 4G and 5G-Based Cellular-V2X for Vehicle-to-Infrastructure Communication and Urban Scenarios in Cooperative Intelligent Transportation Systems
Journal Article

Benchmarking 4G and 5G-Based Cellular-V2X for Vehicle-to-Infrastructure Communication and Urban Scenarios in Cooperative Intelligent Transportation Systems

2022
Request Book From Autostore and Choose the Collection Method
Overview
Vehicle-to-Infrastructure (V2I) communication is expected to bring tremendous benefits in terms of increased road safety, improved traffic efficiency and decreased environmental impact. In 2017, The 3rd Generation Partnership Project (3GPP) released 3GPP Release 14, which introduced Cellular Vehicle-to-Everything communication (C-V2X), bringing Vehicle-to-Everything (V2X) communication capabilities to cellular networks, hence creating an alternative to Dedicated Short-Range Communications (DSRC) technology. Since then, every new 3GPP Release including Release 15, a first full set of 5G standards, offered V2X capabilities. In this paper, we present a complex simulation study, which benchmarks the performance of LTE-based and 5G-based C-V2X technologies deployed for V2I communication in an urban setting. The study compares LTE and 5G deployed both in the Device-to-Device in mode 3 and in infrastructural mode. Target performance indicators used for comparison are average end-to-end (E2E) latency and Packet Delivery Ratio (PDR). The performance of those technologies is studied under varying communication conditions realized by a variation of vehicle traffic intensity, communication perimeter and message generation frequency. Furthermore, the effects of infrastructure deployment density on the performance of selected C-V2X communication technologies are explored by comparing the performance of the investigated technologies for three infrastructure density scenarios, i.e., involving two, four and eight base stations (BSs). The performance results are put into a context of the connectivity requirements of the most popular V2I communication services. The results indicate that both C-V2X technologies can support all the considered V2I services without any limitations in terms of the communication perimeter, traffic intensity and message generation frequency. When it comes to the infrastructure density deployment, the results show that increasing the density of the infrastructure deployment from two BSs to four BSs offers a remarkable performance improvement for all the considered V2I services as well as investigated technologies and their modes. Further infrastructure density increase (from four BSs to eight BSs) does not yield any practical benefits in the investigated urban scenario.