MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Ectopic overexpression of a salt stress-induced pathogenesis-related class 10 protein (PR10) gene from peanut (Arachis hypogaea L.) affords broad spectrum abiotic stress tolerance in transgenic tobacco
Ectopic overexpression of a salt stress-induced pathogenesis-related class 10 protein (PR10) gene from peanut (Arachis hypogaea L.) affords broad spectrum abiotic stress tolerance in transgenic tobacco
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Ectopic overexpression of a salt stress-induced pathogenesis-related class 10 protein (PR10) gene from peanut (Arachis hypogaea L.) affords broad spectrum abiotic stress tolerance in transgenic tobacco
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Ectopic overexpression of a salt stress-induced pathogenesis-related class 10 protein (PR10) gene from peanut (Arachis hypogaea L.) affords broad spectrum abiotic stress tolerance in transgenic tobacco
Ectopic overexpression of a salt stress-induced pathogenesis-related class 10 protein (PR10) gene from peanut (Arachis hypogaea L.) affords broad spectrum abiotic stress tolerance in transgenic tobacco

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Ectopic overexpression of a salt stress-induced pathogenesis-related class 10 protein (PR10) gene from peanut (Arachis hypogaea L.) affords broad spectrum abiotic stress tolerance in transgenic tobacco
Ectopic overexpression of a salt stress-induced pathogenesis-related class 10 protein (PR10) gene from peanut (Arachis hypogaea L.) affords broad spectrum abiotic stress tolerance in transgenic tobacco
Journal Article

Ectopic overexpression of a salt stress-induced pathogenesis-related class 10 protein (PR10) gene from peanut (Arachis hypogaea L.) affords broad spectrum abiotic stress tolerance in transgenic tobacco

2012
Request Book From Autostore and Choose the Collection Method
Overview
Pathogenesis-related proteins are induced in plants in response to stress, pathogen attack or abiotic stimuli, thus playing a cardinal role in plant defense system. A cDNA containing the full-length ORF, AhSIPR10 (474 bp, GenBank acc. no. DQ813661), encoding a novel Salinity-Induced PR class 10 protein was isolated from callus cell lines of peanut (Arachis hypogaea). Real-time quantitative reverse transcription PCR (qRT–PCR) data showed rapid upregulation of AhSIPR10 transcription in peanut callus cultures across salinity, heavy metal, cold and mannitol-induced drought stress environments. Likewise, AhSIPR10 expression was also responsive towards defense/stress signaling molecules salicylic acid (SA), methyl jasmonate, abscisic acid (ABA) and H2O2 treatments. Methyl jasmonate or ABA-induced AhSIPR10 expression was, however, antagonized by SA treatment. A functional role of AhSIPR10 in alleviation of abiotic stress tolerance was further validated through its over-expression in tobacco. Analysis of T1 transgenic tobacco plants overexpressing AhSIPR10 gene showed enhanced tolerance to salt, heavy metal and drought stress through leaf disc senescence, chlorophyll content, seed set and germination assays, thus corroborating a role of salt inducible-PR10 protein in mitigation of abiotic stress-induced damage. Transgenic tobacco lines overexpressing AhSIPR10 displayed adequate photosynthetic CO2 assimilation rates under salt, heavy metal and drought stress environments.