MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Contourlet-based hippocampal magnetic resonance imaging texture features for multivariant classification and prediction of Alzheimer’s disease
Contourlet-based hippocampal magnetic resonance imaging texture features for multivariant classification and prediction of Alzheimer’s disease
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Contourlet-based hippocampal magnetic resonance imaging texture features for multivariant classification and prediction of Alzheimer’s disease
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Contourlet-based hippocampal magnetic resonance imaging texture features for multivariant classification and prediction of Alzheimer’s disease
Contourlet-based hippocampal magnetic resonance imaging texture features for multivariant classification and prediction of Alzheimer’s disease

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Contourlet-based hippocampal magnetic resonance imaging texture features for multivariant classification and prediction of Alzheimer’s disease
Contourlet-based hippocampal magnetic resonance imaging texture features for multivariant classification and prediction of Alzheimer’s disease
Journal Article

Contourlet-based hippocampal magnetic resonance imaging texture features for multivariant classification and prediction of Alzheimer’s disease

2018
Request Book From Autostore and Choose the Collection Method
Overview
The study is aimed to assess whether the addition of contourlet-based hippocampal magnetic resonance imaging (MRI) texture features to multivariant models improves the classification of Alzheimer’s disease (AD) and the prediction of mild cognitive impairment (MCI) conversion, and to evaluate whether Gaussian process (GP) and partial least squares (PLS) are feasible in developing multivariant models in this context. Clinical and MRI data of 58 patients with probable AD, 147 with MCI, and 94 normal controls (NCs) were collected. Baseline contourlet-based hippocampal MRI texture features, medical histories, symptoms, neuropsychological tests, volume-based morphometric (VBM) parameters based on MRI, and regional CMgl measurement based on fluorine-18 fluorodeoxyglucose-positron emission tomography were included to develop GP and PLS models to classify different groups of subjects. GPR1 model, which incorporated MRI texture features and was based on GPG, performed better in classifying different groups of subjects than GPR2 model, which used the same algorithm and had the same data as GPR1 except that MRI texture features were excluded. PLS model, which included the same variables as GPR1 but was based on the PLS algorithm, performed best among the three models. GPR1 accurately predicted 82.2% (51/62) of MCI convertors confirmed during the 2-year follow-up period, while this figure was 53 (85.5%) for PLS model. GPR1 and PLS models accurately predicted 58 (79.5%) vs. 61 (83.6%) of 73 patients with stable MCI, respectively. For seven patients with MCI who converted to NCs, PLS model accurately predicted all cases (100%), while GPR1 predicted six (85.7%) cases. The addition of contourlet-based MRI texture features to multivariant models can effectively improve the classification of AD and the prediction of MCI conversion to AD. Both GPR and LPS models performed well in the classification and predictive process, with the latter having significantly higher classification and predictive accuracies. Advances in knowledge: We combined contourlet-based hippocampal MRI texture features, medical histories, symptoms, neuropsychological tests, volume-based morphometric (VBM) parameters, and regional CMgl measurement to develop models using GP and PLS algorithms to classify AD patients.