MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Dilution effect for highly efficient multiple-component organic solar cells
Dilution effect for highly efficient multiple-component organic solar cells
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Dilution effect for highly efficient multiple-component organic solar cells
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Dilution effect for highly efficient multiple-component organic solar cells
Dilution effect for highly efficient multiple-component organic solar cells

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Dilution effect for highly efficient multiple-component organic solar cells
Dilution effect for highly efficient multiple-component organic solar cells
Journal Article

Dilution effect for highly efficient multiple-component organic solar cells

2022
Request Book From Autostore and Choose the Collection Method
Overview
Although the multiple-component (MC) blend strategy has been frequently used as a very effective way to improve the performance of organic solar cells (OSCs), there is a strong need to understand the fundamental working mechanism and material selection rule for achieving optimal MC-OSCs. Here we present the ‘dilution effect’ as the mechanism for MC-OSCs, where two highly miscible components are molecularly intermixed. Contrary to the aggregation-induced non-radiative decay, the dilution effect enables higher luminescence quantum efficiencies and open-circuit voltages (VOC) in MC-OSCs via suppressed electron–vibration coupling. The continuously broadened bandgap together with reduced electron–vibration coupling also explains the composition-dependent VOC in ternary blends well. Moreover, we show that electrons can transfer between different acceptors, depending on the energy offset between them, which contributes to the largely unperturbed charge transport and high fill factors in MC-OSCs. The discovery of the dilution effect enables the demonstration of a high power conversion efficiency of 18.31% in an MC-OSC.A strategy based on molecular intermixing of two highly miscible components enables the demonstration of high efficiency multiple-component organic solar cells.

MBRLCatalogueRelatedBooks