MbrlCatalogueTitleDetail

Do you wish to reserve the book?
DiFX: A Software Correlator for Very Long Baseline Interferometry Using Multiprocessor Computing Environments
DiFX: A Software Correlator for Very Long Baseline Interferometry Using Multiprocessor Computing Environments
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
DiFX: A Software Correlator for Very Long Baseline Interferometry Using Multiprocessor Computing Environments
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
DiFX: A Software Correlator for Very Long Baseline Interferometry Using Multiprocessor Computing Environments
DiFX: A Software Correlator for Very Long Baseline Interferometry Using Multiprocessor Computing Environments

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
DiFX: A Software Correlator for Very Long Baseline Interferometry Using Multiprocessor Computing Environments
DiFX: A Software Correlator for Very Long Baseline Interferometry Using Multiprocessor Computing Environments
Journal Article

DiFX: A Software Correlator for Very Long Baseline Interferometry Using Multiprocessor Computing Environments

2007
Request Book From Autostore and Choose the Collection Method
Overview
We describe the development of an FX‐style correlator for very long baseline interferometry (VLBI), implemented in software and intended to run in multiprocessor computing environments, such as large clusters of commodity machines (Beowulf clusters) or computers specifically designed for high‐performance computing, such as multiprocessor shared‐memory machines. We outline the scientific and practical benefits for VLBI correlation, these chiefly being due to the inherent flexibility of software and the fact that the highly parallel and scalable nature of the correlation task is well suited to a multiprocessor computing environment. We suggest scientific applications where such an approach to VLBI correlation is most suited and will give the best returns. We report detailed results from the Distributed FX (DiFX) software correlator running on the Swinburne supercomputer (a Beowulf cluster of ∼300 commodity processors), including measures of the performance of the system. For example, to correlate all Stokes products for a 10 antenna array with an aggregate bandwidth of 64 MHz per station, and using typical time and frequency resolution, currently requires an order of 100 desktop‐class compute nodes. Due to the effect of Moore’s law on commodity computing performance, the total number and cost of compute nodes required to meet a given correlation task continues to decrease rapidly with time. We show detailed comparisons between DiFX and two existing hardware‐based correlators: the Australian Long Baseline Array S2 correlator and the NRAO Very Long Baseline Array correlator. In both cases, excellent agreement was found between the correlators. Finally, we describe plans for the future operation of DiFX on the Swinburne supercomputer for both astrophysical and geodetic science.
Publisher
The University of Chicago Press,University of Chicago Press