MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Identifying El Niño–Southern Oscillation influences on rainfall with classification models: implications for water resource management of Sri Lanka
Identifying El Niño–Southern Oscillation influences on rainfall with classification models: implications for water resource management of Sri Lanka
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Identifying El Niño–Southern Oscillation influences on rainfall with classification models: implications for water resource management of Sri Lanka
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Identifying El Niño–Southern Oscillation influences on rainfall with classification models: implications for water resource management of Sri Lanka
Identifying El Niño–Southern Oscillation influences on rainfall with classification models: implications for water resource management of Sri Lanka

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Identifying El Niño–Southern Oscillation influences on rainfall with classification models: implications for water resource management of Sri Lanka
Identifying El Niño–Southern Oscillation influences on rainfall with classification models: implications for water resource management of Sri Lanka
Journal Article

Identifying El Niño–Southern Oscillation influences on rainfall with classification models: implications for water resource management of Sri Lanka

2019
Request Book From Autostore and Choose the Collection Method
Overview
Seasonal to annual forecasts of precipitation patterns are very important for water infrastructure management. In particular, such forecasts can be used to inform decisions about the operation of multipurpose reservoir systems in the face of changing climate conditions. Success in making useful forecasts is often achieved by considering climate teleconnections such as the El Niño–Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) as related to sea surface temperature variations. We present a statistical analysis to explore the utility of using rainfall relationships in Sri Lanka with ENSO and IOD to predict rainfall to the Mahaweli and Kelani River basins of the country. Forecasting of rainfall as the classes flood, drought, and normal is helpful for water resource management decision-making. Results of these models give better accuracy than a prediction of absolute values. Quadratic discrimination analysis (QDA) and classification tree models are used to identify the patterns of rainfall classes with respect to ENSO and IOD indices. Ensemble modeling tool Random Forest is also used to predict the rainfall classes as drought and not drought with higher skill. These models can be used to forecast the areal rainfall using predicted climate indices. Results from these models are not very accurate; however, the patterns recognized provide useful input to water resource managers as they plan for adaptation of agriculture and energy sectors in response to climate variability.