Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Stochastic dual dynamic integer programming
by
Xu, Andy Sun
, Zou, Jikai
, Ahmed, Shabbir
in
Algorithms
/ Benders decomposition
/ Convexity
/ Dynamic programming
/ Integer programming
/ Linear functions
/ Multistage
/ Portfolio management
/ Tightness
2019
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Stochastic dual dynamic integer programming
by
Xu, Andy Sun
, Zou, Jikai
, Ahmed, Shabbir
in
Algorithms
/ Benders decomposition
/ Convexity
/ Dynamic programming
/ Integer programming
/ Linear functions
/ Multistage
/ Portfolio management
/ Tightness
2019
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Journal Article
Stochastic dual dynamic integer programming
2019
Request Book From Autostore
and Choose the Collection Method
Overview
Multistage stochastic integer programming (MSIP) combines the difficulty of uncertainty, dynamics, and non-convexity, and constitutes a class of extremely challenging problems. A common formulation for these problems is a dynamic programming formulation involving nested cost-to-go functions. In the linear setting, the cost-to-go functions are convex polyhedral, and decomposition algorithms, such as nested Benders’ decomposition and its stochastic variant, stochastic dual dynamic programming (SDDP), which proceed by iteratively approximating these functions by cuts or linear inequalities, have been established as effective approaches. However, it is difficult to directly adapt these algorithms to MSIP due to the nonconvexity of integer programming value functions. In this paper we propose an extension to SDDP—called stochastic dual dynamic integer programming (SDDiP)—for solving MSIP problems with binary state variables. The crucial component of the algorithm is a new reformulation of the subproblems in each stage and a new class of cuts, termed Lagrangian cuts, derived from a Lagrangian relaxation of a specific reformulation of the subproblems in each stage, where local copies of state variables are introduced. We show that the Lagrangian cuts satisfy a tightness condition and provide a rigorous proof of the finite convergence of SDDiP with probability one. We show that, under fairly reasonable assumptions, an MSIP problem with general state variables can be approximated by one with binary state variables to desired precision with only a modest increase in problem size. Thus our proposed SDDiP approach is applicable to very general classes of MSIP problems. Extensive computational experiments on three classes of real-world problems, namely electric generation expansion, financial portfolio management, and network revenue management, show that the proposed methodology is very effective in solving large-scale multistage stochastic integer optimization problems.
Publisher
Springer Nature B.V
This website uses cookies to ensure you get the best experience on our website.