MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Potential effect of novel endophytic nitrogen fixing diverse species of Rahnella on growth promotion of wheat (Triticum aestivum L.)
Potential effect of novel endophytic nitrogen fixing diverse species of Rahnella on growth promotion of wheat (Triticum aestivum L.)
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Potential effect of novel endophytic nitrogen fixing diverse species of Rahnella on growth promotion of wheat (Triticum aestivum L.)
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Potential effect of novel endophytic nitrogen fixing diverse species of Rahnella on growth promotion of wheat (Triticum aestivum L.)
Potential effect of novel endophytic nitrogen fixing diverse species of Rahnella on growth promotion of wheat (Triticum aestivum L.)

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Potential effect of novel endophytic nitrogen fixing diverse species of Rahnella on growth promotion of wheat (Triticum aestivum L.)
Potential effect of novel endophytic nitrogen fixing diverse species of Rahnella on growth promotion of wheat (Triticum aestivum L.)
Journal Article

Potential effect of novel endophytic nitrogen fixing diverse species of Rahnella on growth promotion of wheat (Triticum aestivum L.)

2024
Request Book From Autostore and Choose the Collection Method
Overview
The present investigation aims to isolate nitrogen fixing endophytic bacteria from cereals crops and their potential role in plant growth promotion of wheat (Triticum aestivum L.) for sustainable growth. In the present investigation, endophytic bacteria were isolated from different cereal crops growing in the Divine Valley of Baru Sahib, Himachal Pradesh, India and isolates were screened for nitrogen fixation. The nitrogenase activity exhibiting bacterial isolates were further screened for other plant growth promoting traits including solubilization of phosphorus, potassium, and zinc; production of indole-3-acetic acid, siderophores, ammonia, hydrogen cyanide and extracellular enzyme. The potential nitrogen fixing strains were molecularly identified and evaluated for the growth promotion of wheat. A total of 304 putative endophytic bacterial isolates were isolated from wheat, oats, barley, and maize using selective and complex growth media. Among 304 putative endophytic bacteria, 8 isolates exhibits nitrogenase activity. On the basis of nitrogenase activity and other plant promoting traits, two efficient strains i.e. EU-E1ST3.1 and EU-A2RNfb were molecularly identified using 16S rRNA gene sequencing and found that these strains belongs to genera Rahnella. The wheat inoculated with two selected nitrogen-fixing endophytic bacterial strains showed considerable enhancement in total chlorophyll, nitrogen, Fe and Zn content over the un-inoculated control. In comparison of two selected nitrogen-fixing endophytic bacterial strains, Rahnella aquatilis EU-E1ST3.1 was found to enhance better growth and physiological parameters and it might be developed as biofertilizers to establish a sustainable agriculture system. In the present investigation, the isolated potential nitrogen fixing endophytic bacteria could be used as biofertilizer or bioinoculant for growth of diverse cereal crops growing in hilly region for agricultural sustainability.