MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Numerical Simulation Studies of Ultrasonic De-Icing for Heating, Ventilation, Air Conditioning, and Refrigeration Structures
Numerical Simulation Studies of Ultrasonic De-Icing for Heating, Ventilation, Air Conditioning, and Refrigeration Structures
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Numerical Simulation Studies of Ultrasonic De-Icing for Heating, Ventilation, Air Conditioning, and Refrigeration Structures
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Numerical Simulation Studies of Ultrasonic De-Icing for Heating, Ventilation, Air Conditioning, and Refrigeration Structures
Numerical Simulation Studies of Ultrasonic De-Icing for Heating, Ventilation, Air Conditioning, and Refrigeration Structures

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Numerical Simulation Studies of Ultrasonic De-Icing for Heating, Ventilation, Air Conditioning, and Refrigeration Structures
Numerical Simulation Studies of Ultrasonic De-Icing for Heating, Ventilation, Air Conditioning, and Refrigeration Structures
Journal Article

Numerical Simulation Studies of Ultrasonic De-Icing for Heating, Ventilation, Air Conditioning, and Refrigeration Structures

2025
Request Book From Autostore and Choose the Collection Method
Overview
Ice accumulation on heating, ventilation, air conditioning, and refrigeration (HVACR) structures presents significant operational challenges. These challenges include reduced efficiency, increased energy consumption, and potential damage to equipment. Traditional de-icing methods, such as chemical treatments, mechanical scraping, or heating-based techniques, are often labor-intensive, costly, and environmentally harmful. This study uniquely investigates ultrasonic de-icing as an energy-efficient alternative for HVACR applications, focusing on the specific structural geometries found in these systems. A comprehensive numerical simulation framework was developed using finite element analysis to explore ultrasonic wave propagation across four distinct HVACR structures. Key parameters such as ultrasonic frequency, power levels, and the number and placement of actuators were examined for their impact on ice detachment efficiency. Results from simulations on a plate structure reveal that ultrasonic excitation can propagate effectively across large areas (at least 150 × 150 mm), enhancing the de-icing coverage. Lower frequency (e.g., 30 to 45 kHz) excitation results in greater displacement, improving de-icing performance, while increased actuator numbers with the same total power input also enhance effectiveness. Two actuators seem sufficient for the de-icing of a 300 × 300 mm plate. For tube-and-fin structures, specific high-power ultrasonic frequencies selectively excite the fin plates, demonstrating efficient ice removal when actuated on the tube. However, optimal performance requires careful design of actuator placement and vibration modes to accommodate the irregular shapes of these structures.