MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Space-Time Unit-Level EBLUP for Large Data Sets
Space-Time Unit-Level EBLUP for Large Data Sets
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Space-Time Unit-Level EBLUP for Large Data Sets
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Space-Time Unit-Level EBLUP for Large Data Sets
Space-Time Unit-Level EBLUP for Large Data Sets

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Space-Time Unit-Level EBLUP for Large Data Sets
Space-Time Unit-Level EBLUP for Large Data Sets
Journal Article

Space-Time Unit-Level EBLUP for Large Data Sets

2017
Request Book From Autostore and Choose the Collection Method
Overview
Most important large-scale surveys carried out by national statistical institutes are the repeated survey type, typically intended to produce estimates for several parameters of the whole population, as well as parameters related to some subpopulations. Small area estimation techniques are becoming more and more important for the production of official statistics where direct estimators are not able to produce reliable estimates. In order to exploit data from different survey cycles, unit-level linear mixed models with area and time random effects can be considered. However, the large amount of data to be processed may cause computational problems. To overcome the computational issues, a reformulation of predictors and the correspondent mean cross product estimator is given. The R code based on the new formulation enables the elaboration of about 7.2 millions of data records in a matter of minutes.