Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Femtosecond Laser Machining of an X-ray Mask in a 500 Micron-Thick Tungsten Sheet
by
Owusu-Ansah, Ebenezer
, Dalton, Colin
in
Ablation
/ CAD-CAM systems
/ CAD/CAM
/ computer numerically controlled (CNC) motion
/ Computer programs
/ Electric fields
/ Energy
/ femtosecond laser material processing (FLMP)
/ femtosecond laser pulse
/ Gold
/ laser ablation
/ Laser beams
/ Laser machining
/ Lasers
/ Machining
/ Methods
/ Numerical controls
/ Plasma etching
/ Pulse duration
/ Radiation
/ Software
/ Tungsten
/ ultrafast laser processing
/ ultrafast lasers
2023
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Femtosecond Laser Machining of an X-ray Mask in a 500 Micron-Thick Tungsten Sheet
by
Owusu-Ansah, Ebenezer
, Dalton, Colin
in
Ablation
/ CAD-CAM systems
/ CAD/CAM
/ computer numerically controlled (CNC) motion
/ Computer programs
/ Electric fields
/ Energy
/ femtosecond laser material processing (FLMP)
/ femtosecond laser pulse
/ Gold
/ laser ablation
/ Laser beams
/ Laser machining
/ Lasers
/ Machining
/ Methods
/ Numerical controls
/ Plasma etching
/ Pulse duration
/ Radiation
/ Software
/ Tungsten
/ ultrafast laser processing
/ ultrafast lasers
2023
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Femtosecond Laser Machining of an X-ray Mask in a 500 Micron-Thick Tungsten Sheet
by
Owusu-Ansah, Ebenezer
, Dalton, Colin
in
Ablation
/ CAD-CAM systems
/ CAD/CAM
/ computer numerically controlled (CNC) motion
/ Computer programs
/ Electric fields
/ Energy
/ femtosecond laser material processing (FLMP)
/ femtosecond laser pulse
/ Gold
/ laser ablation
/ Laser beams
/ Laser machining
/ Lasers
/ Machining
/ Methods
/ Numerical controls
/ Plasma etching
/ Pulse duration
/ Radiation
/ Software
/ Tungsten
/ ultrafast laser processing
/ ultrafast lasers
2023
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Femtosecond Laser Machining of an X-ray Mask in a 500 Micron-Thick Tungsten Sheet
Journal Article
Femtosecond Laser Machining of an X-ray Mask in a 500 Micron-Thick Tungsten Sheet
2023
Request Book From Autostore
and Choose the Collection Method
Overview
Femtosecond laser material processing (FLMP) was used to make an X-ray mask in a 500 µm thick tungsten sheet without the use of any chemical etch methods. The laser produced an 800 nm wavelength at a 1 kHz repetition rate and a pulse width of 100 fs. The laser beam arrival at the tungsten sheet was synchronized to a computer numerically controlled (CNC) stage that allowed for motion in the XYZθ directions. The X-ray mask design was made using CAD/CAM software (Alphacam 2019 R1) and it consisted of linear, circular, and 45° angle features that covered an area of 10 mm × 10 mm. A total of 70 laser beam passes at a moderate laser energy of 605.94 J/cm2 were used to make through-cut features into the tungsten sheet. The morphology of the top view (laser incident, LS) images showed cleaner and smoother cut edges relative to the bottom view (laser exit, LE) images. It was found that the size dimensions of the through-cut features on the LE surfaces were better aligned with the CAD dimensions than those of the LS surfaces. The focused laser beam produced inclined cut surfaces as the beam made the through cut from the LS to the LE of the tungsten sheet. The circular features at the LS surface deviated toward being oval-like on the LE surface, which could be compensated for in future CAD designs. The dependence of the CNC processing speed on the thickness of the etch depth was determined to have a third-order exponential decay relationship, thereby producing a theoretical model that will be useful for future investigators to predict the required experimental parameters needed to achieve a known etch depth in tungsten. This is the first study that has demonstrated the capability of using a femtosecond laser to machine through-cut an X-ray mask in a 500 µm thick tungsten sheet with no involvement of a wet etch or any other such supporting process.
Publisher
MDPI AG
Subject
This website uses cookies to ensure you get the best experience on our website.