Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Coherent Focused Lidars for Doppler Sensing of Aerosols and Wind
by
Hill, Chris
in
coherent Doppler lidar
/ single-particle
/ wind sensing
2018
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Coherent Focused Lidars for Doppler Sensing of Aerosols and Wind
by
Hill, Chris
in
coherent Doppler lidar
/ single-particle
/ wind sensing
2018
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Coherent Focused Lidars for Doppler Sensing of Aerosols and Wind
Journal Article
Coherent Focused Lidars for Doppler Sensing of Aerosols and Wind
2018
Request Book From Autostore
and Choose the Collection Method
Overview
Many coherent lidars are used today with aerosol targets for detailed studies of e.g., local wind speed and turbulence. Fibre-optic lidars operating near 1.5 μm dominate the wind energy market, with hundreds now installed worldwide. Here, we review some of the beam/target physics for these lidars and discuss practical problems. In a monostatic Doppler lidar with matched local oscillator and transmit beams, focusing of the beam gives rise to a spatial sensitivity along the beam direction that depends on the inverse of beam area; for Gaussian beams, this sensitivity follows a Lorentzian function. At short range, the associated probe volume can be extremely small and contain very few scatterers; we describe predictions and simulations for few-scatterer and multi-scatterer sensing. We review the single-particle mode (SPM) and volume mode (VM) modelling of Frehlich et al. and some numerical modelling of lidar detector time series and statistics. Interesting behaviour may be observed from a modern coherent lidar used at short ranges (e.g., in a wind tunnel) and/or with weak aerosol seeding. We also review some problems (and solutions) for Doppler-sign-insensitive lidars.
Publisher
MDPI AG
Subject
This website uses cookies to ensure you get the best experience on our website.