MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Rock Physics Modeling Studies on the Elastic and Anisotropic Properties of Organic-Rich Shale
Rock Physics Modeling Studies on the Elastic and Anisotropic Properties of Organic-Rich Shale
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Rock Physics Modeling Studies on the Elastic and Anisotropic Properties of Organic-Rich Shale
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Rock Physics Modeling Studies on the Elastic and Anisotropic Properties of Organic-Rich Shale
Rock Physics Modeling Studies on the Elastic and Anisotropic Properties of Organic-Rich Shale

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Rock Physics Modeling Studies on the Elastic and Anisotropic Properties of Organic-Rich Shale
Rock Physics Modeling Studies on the Elastic and Anisotropic Properties of Organic-Rich Shale
Journal Article

Rock Physics Modeling Studies on the Elastic and Anisotropic Properties of Organic-Rich Shale

2024
Request Book From Autostore and Choose the Collection Method
Overview
Shale gas reservoirs have a large amount of resources, a wide range of burial, and great development potential. In order to evaluate the elastic properties of the shale, elastic wave velocity and anisotropy measurements of Longmaxi shale samples were carried out in the laboratory. Combined with the results of back scattering scanning electron microscopy (SEM) and digital mineral composition tests, the relationship between the anisotropy and the mineral components of the shale samples is discussed. It is found that the clay and kerogen combination distributed with an inorganic mineral background is the main cause of anisotropy. Then, the elastic properties of the organic-rich shale are analyzed with the anisotropic differential equivalent medium model (DEM). The clay and kerogen combination is established with kerogen as the background medium and clay mineral as the additive phase. The bond transformation is used to rotate the combination so that its directional arrangement is consistent with the real sedimentary situation of the stratum. Then, the clay and kerogen combination is added to the inorganic mineral matrix, with the organic and inorganic pores added to characterize the anisotropy of the shale to the greatest extent. It is found that the error between the wave velocity results calculated from the model and measured in the laboratory is less than 10%, which means the model is reliable. Finally, the effects of the microcracks and aspect ratio, kerogen content, and maturity on the elastic and anisotropic properties of shale rocks are simulated and analyzed with this model. The degree of anisotropy increases with the decrease in the pore aspect ratio and the increase in the microcracks content. The greater the kerogen content and maturity, the greater the anisotropy of rock. This study is of great significance for predicting the “sweet spot” of shale gas and optimizing hydraulic fracturing layers.