MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Artificial Intelligence-Centric Low-Enthalpy Geothermal Field Development Planning
Artificial Intelligence-Centric Low-Enthalpy Geothermal Field Development Planning
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Artificial Intelligence-Centric Low-Enthalpy Geothermal Field Development Planning
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Artificial Intelligence-Centric Low-Enthalpy Geothermal Field Development Planning
Artificial Intelligence-Centric Low-Enthalpy Geothermal Field Development Planning

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Artificial Intelligence-Centric Low-Enthalpy Geothermal Field Development Planning
Artificial Intelligence-Centric Low-Enthalpy Geothermal Field Development Planning
Journal Article

Artificial Intelligence-Centric Low-Enthalpy Geothermal Field Development Planning

2024
Request Book From Autostore and Choose the Collection Method
Overview
Low-enthalpy geothermal energy can make a major contribution towards reducing CO2 emissions. However, the development of geothermal reservoirs is costly and time intensive. In particular, high capital expenditures, data acquisition costs, and long periods of time from identifying a geothermal resource to geothermal heat extraction make geothermal field developments challenging. Conventional geothermal field development planning follows a linear approach starting with numerical model calibrations of the existing subsurface data, simulations of forecasts for geothermal heat production, and cost estimations. Next, data acquisition actions are evaluated and performed, and then the models are changed by integrating the new data before being finally used for forecasting and economics. There are several challenges when using this approach and the duration of model rebuilding with the availability of new data is time consuming. Furthermore, the approach does not address sequential decision making under uncertainty as it focuses on individual data acquisition actions. An artificial intelligence (AI)-centric approach to field development planning substantially improves cycle times and the expected rewards from geothermal projects. The reason for this is that various methods such as machine learning in data conditioning and distance-based generalized sensitivity analysis assess the uncertainty and quantify its potential impact on the final value. The use of AI for sequential decision making under uncertainty results in an optimized data acquisition strategy, a recommendation of a specific development scenario, or advice against further investment. This approach is illustrated by applying AI-centric geothermal field development planning to an Austrian low-enthalpy geothermal case. The results show an increase in the expected value of over 27% and a reduction in data acquisition costs by more than 35% when compared with conventional field development planning strategies. Furthermore, the results are used in systematic trade-off assessments of various key performance indicators.