MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Development of Machine Learning-Based Production Forecasting for Offshore Gas Fields Using a Dynamic Material Balance Equation
Development of Machine Learning-Based Production Forecasting for Offshore Gas Fields Using a Dynamic Material Balance Equation
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Development of Machine Learning-Based Production Forecasting for Offshore Gas Fields Using a Dynamic Material Balance Equation
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Development of Machine Learning-Based Production Forecasting for Offshore Gas Fields Using a Dynamic Material Balance Equation
Development of Machine Learning-Based Production Forecasting for Offshore Gas Fields Using a Dynamic Material Balance Equation

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Development of Machine Learning-Based Production Forecasting for Offshore Gas Fields Using a Dynamic Material Balance Equation
Development of Machine Learning-Based Production Forecasting for Offshore Gas Fields Using a Dynamic Material Balance Equation
Journal Article

Development of Machine Learning-Based Production Forecasting for Offshore Gas Fields Using a Dynamic Material Balance Equation

2024
Request Book From Autostore and Choose the Collection Method
Overview
Offshore oil and gas fields pose significant challenges due to their lower accessibility compared to onshore fields. To enhance operational efficiency in these deep-sea environments, it is essential to design optimal fluid production conditions that ensure equipment durability and flow safety. This study aims to develop a smart operational solution that integrates data from three offshore gas fields with a dynamic material balance equation (DMBE) method. By combining the material balance equation and inflow performance relation (IPR), we establish a reservoir flow analysis model linked to an AI-trained production pipe and subsea pipeline flow analysis model. We simulate time-dependent changes in reservoir production capacity using DMBE and IPR. Additionally, we utilize SLB’s PIPESIM software to create a vertical flow performance (VFP) table under various conditions. Machine learning techniques train this VFP table to analyze pipeline flow characteristics and parameter correlations, ultimately developing a model to predict bottomhole pressure (BHP) for specific production conditions. Our research employs three methods to select the deep learning model, ultimately opting for a multilayer perceptron (MLP) combined with regression. The trained model’s predictions show an average error rate of within 1.5% when compared with existing commercial simulators, demonstrating high accuracy. This research is expected to enable efficient production management and risk forecasting for each well, thus increasing revenue, minimizing operational costs, and contributing to stable plant operations and predictive maintenance of equipment.