MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Time-resolved imaging of three-dimensional nanoscale magnetization dynamics
Time-resolved imaging of three-dimensional nanoscale magnetization dynamics
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Time-resolved imaging of three-dimensional nanoscale magnetization dynamics
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Time-resolved imaging of three-dimensional nanoscale magnetization dynamics
Time-resolved imaging of three-dimensional nanoscale magnetization dynamics

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Time-resolved imaging of three-dimensional nanoscale magnetization dynamics
Time-resolved imaging of three-dimensional nanoscale magnetization dynamics
Journal Article

Time-resolved imaging of three-dimensional nanoscale magnetization dynamics

2020
Request Book From Autostore and Choose the Collection Method
Overview
Understanding and control of the dynamic response of magnetic materials with a three-dimensional magnetization distribution is important both fundamentally and for technological applications. From a fundamental point of view, the internal magnetic structure and dynamics in bulk materials still need to be mapped1, including the dynamic properties of topological structures such as vortices2, magnetic singularities3 or skyrmion lattices4. From a technological point of view, the response of inductive materials to magnetic fields and spin-polarized currents is essential for magnetic sensors and data storage devices5. Here, we demonstrate time-resolved magnetic laminography, a pump–probe technique, which offers access to the temporal evolution of a three-dimensional magnetic microdisc with nanoscale resolution, and with a synchrotron-limited temporal resolution of 70 ps. We image the dynamic response to a 500 MHz magnetic field of the complex three-dimensional magnetization in a two-phase bulk magnet with a lateral spatial resolution of 50 nm. This is achieved with a stroboscopic measurement consisting of eight time steps evenly spaced over 2 ns. These measurements map the spatial transition between domain wall motion and the dynamics of a uniform magnetic domain that is attributed to variations in the magnetization state across the phase boundary. Our technique, which probes three-dimensional magnetic structures with temporal resolution, enables the experimental investigation of functionalities arising from dynamic phenomena in bulk and three-dimensional patterned nanomagnets6.Knowledge and control of the dynamic response in micromagnetic configurations is important both for understanding their fundamental properties and for their use in technological applications. Pump–probe magnetic laminography now unveils the evolution of the magnetization in a three-dimensional system with nanoscale resolution.