MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Experimental Study on the Permeability of Microbial-Solidified Calcareous Sand Based on MICP
Experimental Study on the Permeability of Microbial-Solidified Calcareous Sand Based on MICP
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Experimental Study on the Permeability of Microbial-Solidified Calcareous Sand Based on MICP
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Experimental Study on the Permeability of Microbial-Solidified Calcareous Sand Based on MICP
Experimental Study on the Permeability of Microbial-Solidified Calcareous Sand Based on MICP

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Experimental Study on the Permeability of Microbial-Solidified Calcareous Sand Based on MICP
Experimental Study on the Permeability of Microbial-Solidified Calcareous Sand Based on MICP
Journal Article

Experimental Study on the Permeability of Microbial-Solidified Calcareous Sand Based on MICP

2022
Request Book From Autostore and Choose the Collection Method
Overview
In the construction of artificial islands in distant seas, calcareous sand has been widely used as a foundation filler due to its excellent mechanical properties and extensive availability in the marine environment. How to store more fresh water on the artificial islands by reducing its permeability is currently a great challenge. Microbial-induced carbonate precipitation (MICP) has always been considered as a great potential method to improve the cemented properties of calcareous sand, but the effect of grain gradation on the permeability of MICP-improved calcareous sand remains unclear. In this research, a self-made device was developed to conduct MICP grouting and permeability tests, where the permeability coefficient (k) under different grain gradations (curvature coefficient (Cc) and uniformity coefficient (Cu)) was measured. A CT scan was conducted to investigate the variation in the porosity (n) of sand samples before and after MICP treatment. The weighting method was adopted to measure the content of induced calcium carbonate (M). A scanning electron microscopy (SEM) technique was used to further study the micromechanism of the MICP treatment. Finally, the correlations between the k of MICP-treated sand and Cu, as well as Cc, were semiquantitively analyzed. The results show that the magnitude of M, k and n changes are closely related to Cc and Cu. The reduction amount of k and n increased with the rise in Cc and Cu, and the increased amount of M increased with the rise in Cc and Cu. The SEM results show that the particle surface became rough due to the coating effect of CaCO3 crystals, and the pore spaces were reduced because of the partially filling effect of the crystals, which was responsible for the decrease in permeability and porosity. Furthermore, k fitted well with Cu and Cc, respectively, and the fitting curve reveals that larger Cu (Cu ≥ 6.0) and smaller Cc (2.0 > Cc > 0.5) were more suitable for MICP treatments and lead to a large reduction in permeability. The above results indicate that the grain gradation of calcareous sand had a significant influence on its permeability improved by MICP.