MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Evaluation System of AC/DC Strong–Weak Balance Relationship and Stability Enhancement Strategy for the Receiving-End Power Grid
Evaluation System of AC/DC Strong–Weak Balance Relationship and Stability Enhancement Strategy for the Receiving-End Power Grid
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Evaluation System of AC/DC Strong–Weak Balance Relationship and Stability Enhancement Strategy for the Receiving-End Power Grid
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Evaluation System of AC/DC Strong–Weak Balance Relationship and Stability Enhancement Strategy for the Receiving-End Power Grid
Evaluation System of AC/DC Strong–Weak Balance Relationship and Stability Enhancement Strategy for the Receiving-End Power Grid

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Evaluation System of AC/DC Strong–Weak Balance Relationship and Stability Enhancement Strategy for the Receiving-End Power Grid
Evaluation System of AC/DC Strong–Weak Balance Relationship and Stability Enhancement Strategy for the Receiving-End Power Grid
Journal Article

Evaluation System of AC/DC Strong–Weak Balance Relationship and Stability Enhancement Strategy for the Receiving-End Power Grid

2025
Request Book From Autostore and Choose the Collection Method
Overview
With the maturation of ultra-high-voltage direct current (UHVDC) technology, DC grids are taking on a more critical role in power systems. However, their impact on AC grids has become more pronounced, particularly in terms of frequency, short-circuit current level, and power flow control capabilities, which also affects the power supply reliability of the receiving-end grid. To comprehensively evaluate the balance between AC and DC strength at the receiving-end, this paper proposes a multidimensional assessment system that covers grid strength and operational security under various operating conditions. Furthermore, a rationality evaluation model for the AC/DC strong–weak balance relationship is developed based on the entropy weight method, forming a complete evaluation framework for assessing the AC/DC strong–weak balance in the receiving-end power grid. Finally, to address strength imbalances in grid, a structural optimization method for the receiving-end grid is designed by combining network decoupling techniques with modular multilevel converter-based HVDC (MMC–HVDC), serving as a strategy for enhancing grid stability. The proposed strategy is validated through simulations in a typical test system using PSD-BPA, demonstrating its effectiveness in optimizing power flow characteristics, improving system stability, reducing the risk of short-circuit current overloads and large-scale blackouts, and maintaining efficient system operation.