MbrlCatalogueTitleDetail

Do you wish to reserve the book?
The role of resolvin D1 in the regulation of inflammatory and catabolic mediators in osteoarthritis
The role of resolvin D1 in the regulation of inflammatory and catabolic mediators in osteoarthritis
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
The role of resolvin D1 in the regulation of inflammatory and catabolic mediators in osteoarthritis
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
The role of resolvin D1 in the regulation of inflammatory and catabolic mediators in osteoarthritis
The role of resolvin D1 in the regulation of inflammatory and catabolic mediators in osteoarthritis

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
The role of resolvin D1 in the regulation of inflammatory and catabolic mediators in osteoarthritis
The role of resolvin D1 in the regulation of inflammatory and catabolic mediators in osteoarthritis
Journal Article

The role of resolvin D1 in the regulation of inflammatory and catabolic mediators in osteoarthritis

2016
Request Book From Autostore and Choose the Collection Method
Overview
Objective and design Resolvin D1 (RvD1), an omega-3 fatty acid derivative, has shown remarkable properties in resolving inflammation, promoting tissue repair and preserving tissue integrity. In this study, we investigated RvD1 effects on major processes involved in osteoarthritis (OA) pathophysiology. Materials and methods Human OA chondrocytes were treated with either 1 ng/ml interleukin-1β (IL-1β) or 20 μM 4-hydroxynonenal (HNE), then treated or not with increased concentrations of RvD1 (0–10 μM). RvD1 levels were measured by enzyme immunoassay in synovial fluids from experimental dog model of OA and sham operated dogs obtained from our previous study. Cell viability was evaluated by 3-(4,5-dimethyl-thiazoyl)-2,5-diphenyl-SH-tetrazolium bromide assay. Parameters related to inflammation, catabolism and apoptosis were determined by enzyme-linked immunosorbent assay, Western blotting, and quantitative polymerase chain reaction. Glutathione (GSH) was assessed by commercial kit. The activation of mitogen-activated protein kinases and nuclear factor-kappaB (NF-κB) pathways was evaluated by Western blot. Results We showed that RvD1 levels were higher in synovial fluids from OA joint compared to controls. In OA human chondrocytes, we demonstrated that RvD1 was not toxic up to 10 μM and stifled IL-1β-induced cyclooxygenase 2, prostaglandin E2, inducible nitric oxide synthase, nitric oxide, and matrix metalloproteinase-13. Our study of signalling pathways revealed that RvD1 suppressed IL-1β-induced activation of NF-κB/p65, p38/MAPK and JNK 1/2 . Moreover, RvD1 prevented HNE-induced cell apoptosis and oxidative stress, as indicated by inactivation of caspases, inhibition of lactate dehydrogenase release, and increased levels of Bcl2 and AKT, as well as GSH. Conclusion This is the first in vitro study demonstrating the beneficial effect of RvD1 in OA. That RvD1 abolishing a number of factors known to be involved in OA pathogenesis renders it a clinically valuable agent in prevention of the disease.