MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Aerodynamic Loading and Wind-Induced Vibration Characteristics of Bridge Girders with Typical Asymmetric Configurations
Aerodynamic Loading and Wind-Induced Vibration Characteristics of Bridge Girders with Typical Asymmetric Configurations
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Aerodynamic Loading and Wind-Induced Vibration Characteristics of Bridge Girders with Typical Asymmetric Configurations
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Aerodynamic Loading and Wind-Induced Vibration Characteristics of Bridge Girders with Typical Asymmetric Configurations
Aerodynamic Loading and Wind-Induced Vibration Characteristics of Bridge Girders with Typical Asymmetric Configurations

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Aerodynamic Loading and Wind-Induced Vibration Characteristics of Bridge Girders with Typical Asymmetric Configurations
Aerodynamic Loading and Wind-Induced Vibration Characteristics of Bridge Girders with Typical Asymmetric Configurations
Journal Article

Aerodynamic Loading and Wind-Induced Vibration Characteristics of Bridge Girders with Typical Asymmetric Configurations

2025
Request Book From Autostore and Choose the Collection Method
Overview
The bridge girder’s aerodynamic configuration substantially governs its aerodynamic loading and wind-induced vibration characteristics. Extensive research has been performed to optimize the configuration of girders and implement aerodynamic measures to enhance the bridge’s wind resistance. In some practical bridge engineering projects, the aerodynamic configuration of the bridge girder is asymmetric. However, studies investigating the aerodynamic properties of asymmetric girders are limited. In this paper, the aerodynamic loading and vibration characteristics of the Π-shaped girders and box girders with asymmetric bikeways are experimentally studied. Through an extensive series of wind tunnel experiments, the static wind loading coefficients, flutter derivatives, vortex-induced vibration (VIV) responses, and the critical flutter velocities are compared across varying wind direction angles (WDAs). The experimental results demonstrate that the asymmetric girder configurations have different characteristics in both the static wind loading coefficient and flutter derivative in different WDAs. The influence of WDAs on the above-mentioned aerodynamic force coefficients of the asymmetric Π-shaped girder is more pronounced than that on the asymmetric box girder. For the asymmetric Π-shaped girder, the heaving VIV responses at a 0° WDA are smaller than those at a 180° WDA, but the torsional VIV responses at a 0° WDA are larger. Experimental results for critical flutter velocities indicate that the flutter performance at a 0° WDA is better than that at a 180° WDA, especially at positive angles of attack (AOAs) for the two types of asymmetric bridge girders.