MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Development of CO2 Absorption Using Blended Alkanolamine Absorbents for Multicycle Integrated Absorption–Mineralization
Development of CO2 Absorption Using Blended Alkanolamine Absorbents for Multicycle Integrated Absorption–Mineralization
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Development of CO2 Absorption Using Blended Alkanolamine Absorbents for Multicycle Integrated Absorption–Mineralization
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Development of CO2 Absorption Using Blended Alkanolamine Absorbents for Multicycle Integrated Absorption–Mineralization
Development of CO2 Absorption Using Blended Alkanolamine Absorbents for Multicycle Integrated Absorption–Mineralization

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Development of CO2 Absorption Using Blended Alkanolamine Absorbents for Multicycle Integrated Absorption–Mineralization
Development of CO2 Absorption Using Blended Alkanolamine Absorbents for Multicycle Integrated Absorption–Mineralization
Journal Article

Development of CO2 Absorption Using Blended Alkanolamine Absorbents for Multicycle Integrated Absorption–Mineralization

2023
Request Book From Autostore and Choose the Collection Method
Overview
The present study aimed to investigate the feasibility of blended amine absorbents in improving the CO2 alkanolamine-based absorption of multicycle integrated absorption–mineralization (multicycle IAM) under standard operating conditions (20–25 °C and 1 atm). Multicycle IAM is a promising approach that transforms CO2 emissions into valuable products such as carbonates using amine solvents and waste brine. Previously, the use of monoethanolamine (MEA) as an absorbent had limitations in terms of CO2 conversion and absorbent degradation, which led to the exploration of blended alkanolamine absorbents, such as diethanolamine, triethanolamine, and aminomethyl propanol (AMP) combined with MEA. The blended absorbent was evaluated in terms of the absorption performance and carbonate production in continuous cycles of absorption, precipitation/regeneration, and preparation. The results showed that the fourth cycle of the blend of 15 wt.% AMP and 5 wt.% MEA achieved high CO2 absorption and conversion efficiency, with approximately 87% of the absorbed CO2 being converted into precipitated carbonates in 43 min and a slight degradation efficiency of approximately 45%. This blended absorbent can improve the efficiency of capturing and converting CO2 when compared to the use of a single MEA, which is one of the alternative options for the development of CO2 capture and utilization in the future.