MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A hybrid deep leaning model for prediction and parametric sensitivity analysis of noise annoyance
A hybrid deep leaning model for prediction and parametric sensitivity analysis of noise annoyance
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A hybrid deep leaning model for prediction and parametric sensitivity analysis of noise annoyance
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A hybrid deep leaning model for prediction and parametric sensitivity analysis of noise annoyance
A hybrid deep leaning model for prediction and parametric sensitivity analysis of noise annoyance

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A hybrid deep leaning model for prediction and parametric sensitivity analysis of noise annoyance
A hybrid deep leaning model for prediction and parametric sensitivity analysis of noise annoyance
Journal Article

A hybrid deep leaning model for prediction and parametric sensitivity analysis of noise annoyance

2023
Request Book From Autostore and Choose the Collection Method
Overview
Noise annoyance is recognized as an expression of physiological and psychological strain in acoustical environment. The studies on prediction of noise annoyance and parametric sensitivity analysis of factors affecting it have been rarely reported in India. A hybrid ConvLSTM technique was developed in the study to predict traffic-induced noise annoyance in 484 people based on ambient noise levels, as well as survey information. Ambient noise levels were obtained at different locations of Dhanbad city using sound level meter at varying intervals, viz. 09AM–12PM, 03PM–06PM, and 08PM–11PM. The proposed method was compared with some well-known neural network techniques such as K-nearest neighbors (KNN), artificial neural network (ANN), recurrent neural network (RNN), and long-short-term memory (LSTM). The experimental results indicate that the proposed method outperforms other techniques and can be a reliable approach for prediction of noise annoyance with an accuracy of 93.8%. It can be concluded from noise maps that the noise levels in all locations of the Dhanbad city were higher than 70 dB(A) and noise sensitivity is the most important input variable of traffic-induced noise annoyance, followed by honking noise, education, exposure hours, L Aeq , sleeping disorder, and chronic disease. The study shall facilitate in developing a decision support tool for prediction of noise annoyance and promoting implementation of suitable public policy in urban cities.