MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Using machine learning to detect misstatements
Using machine learning to detect misstatements
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Using machine learning to detect misstatements
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Using machine learning to detect misstatements
Using machine learning to detect misstatements

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Using machine learning to detect misstatements
Using machine learning to detect misstatements
Journal Article

Using machine learning to detect misstatements

2021
Request Book From Autostore and Choose the Collection Method
Overview
Machine learning offers empirical methods to sift through accounting datasets with a large number of variables and limited a priori knowledge about functional forms. In this study, we show that these methods help detect and interpret patterns present in ongoing accounting misstatements. We use a wide set of variables from accounting, capital markets, governance, and auditing datasets to detect material misstatements. A primary insight of our analysis is that accounting variables, while they do not detect misstatements well on their own, become important with suitable interactions with audit and market variables. We also analyze differences between misstatements and irregularities, compare algorithms, examine one-year- and two-year-ahead predictions and interpret groups at greater risk of misstatements.
Publisher
Springer Nature B.V