MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Flexural tensegrity of segmental beams
Flexural tensegrity of segmental beams
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Flexural tensegrity of segmental beams
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Flexural tensegrity of segmental beams
Flexural tensegrity of segmental beams

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Flexural tensegrity of segmental beams
Flexural tensegrity of segmental beams
Journal Article

Flexural tensegrity of segmental beams

2020
Request Book From Autostore and Choose the Collection Method
Overview
The term ‘flexural tensegrity’ applies to beam-like structures composed of segments in unilateral contact, whose integrity under flexion is provided by tendons (cables), tensioned and later anchored at the end segments. In addition to the cable tension, the constitutive response depends upon the shape of the contact surfaces between consecutive segments, identified by the corresponding pitch lines and constructed with a double couple of conjugate profiles, in order to achieve an internal constraint equivalent to a spring hinge. The response is non-local in type, because the cable elongation, and consequently the stiffness of the spring hinges, depends upon the rotations of all the segments, but this effect becomes negligible under moderate deflections. In this case, the structure can be approximated with an elastica in the continuum limit. Testing of prototypes, manufactured with a 3D printer, shows a very good agreement with the theoretical predictions for different designs of the spring hinges. The system, whose stiffness can be functionally graded and actively controlled, can be packaged when the cable is slack and deployed by pulling the cable at one extremity. It appears particularly suitable to build soft arms for robotics or deployable compliant booms for aerospace applications.
Publisher
Royal Society

MBRLCatalogueRelatedBooks