Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Flexural tensegrity of segmental beams
by
Boni, Claudio
, Royer-Carfagni, Gianni
, Silvestri, Marco
2020
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Flexural tensegrity of segmental beams
by
Boni, Claudio
, Royer-Carfagni, Gianni
, Silvestri, Marco
2020
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Journal Article
Flexural tensegrity of segmental beams
2020
Request Book From Autostore
and Choose the Collection Method
Overview
The term ‘flexural tensegrity’ applies to beam-like structures composed of segments in unilateral contact, whose integrity under flexion is provided by tendons (cables), tensioned and later anchored at the end segments. In addition to the cable tension, the constitutive response depends upon the shape of the contact surfaces between consecutive segments, identified by the corresponding pitch lines and constructed with a double couple of conjugate profiles, in order to achieve an internal constraint equivalent to a spring hinge. The response is non-local in type, because the cable elongation, and consequently the stiffness of the spring hinges, depends upon the rotations of all the segments, but this effect becomes negligible under moderate deflections. In this case, the structure can be approximated with an elastica in the continuum limit. Testing of prototypes, manufactured with a 3D printer, shows a very good agreement with the theoretical predictions for different designs of the spring hinges. The system, whose stiffness can be functionally graded and actively controlled, can be packaged when the cable is slack and deployed by pulling the cable at one extremity. It appears particularly suitable to build soft arms for robotics or deployable compliant booms for aerospace applications.
Publisher
Royal Society
MBRLCatalogueRelatedBooks
Related Items
Related Items
We currently cannot retrieve any items related to this title. Kindly check back at a later time.
This website uses cookies to ensure you get the best experience on our website.