MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Niobium quarter-wave resonator with the optimized shape for quantum information systems
Niobium quarter-wave resonator with the optimized shape for quantum information systems
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Niobium quarter-wave resonator with the optimized shape for quantum information systems
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Niobium quarter-wave resonator with the optimized shape for quantum information systems
Niobium quarter-wave resonator with the optimized shape for quantum information systems

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Niobium quarter-wave resonator with the optimized shape for quantum information systems
Niobium quarter-wave resonator with the optimized shape for quantum information systems
Journal Article

Niobium quarter-wave resonator with the optimized shape for quantum information systems

2020
Request Book From Autostore and Choose the Collection Method
Overview
Quantum computers (QC), if realized, could disrupt many computationally intense fields of science. The building block element of a QC is a quantum bit (qubit). Qubits enable the use of quantum superposition and multi-state entanglement in QC calculations, allowing a QC to simultaneously perform millions of computations at once. However, quantum states stored in a qubit degrade with decreased quality factors and interactions with the environment. One technical solution to improve qubit lifetimes and network interactions is a circuit comprised of a Josephson junction-based qubit located inside of a high Q-factor superconducting 3D cavity.It is known that niobium resonators can reach Q0>1011. However, existing cavity geometries are optimized for particle acceleration rather than hosting qubits. RadiaBeam Technologies, in collaboration with Argonne National Laboratory and The University of Chicago, has developed a niobium superconducting radio frequency quarter-wave resonant cavity (QWR) for quantum computation. A 6 GHz QWR was optimized to include tapering of the inner and outer conductors, a toroidal shape for the resonator shorting plane, and an inner conductor tip to reduce parasitic capacitance. In this paper, we present the results of the resonator design optimization, fabrication, processing, and testing.