MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Efficient Topology Design for LEO Mega-Constellation Using Topological Structure Units with Heterogeneous ISLs
Efficient Topology Design for LEO Mega-Constellation Using Topological Structure Units with Heterogeneous ISLs
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Efficient Topology Design for LEO Mega-Constellation Using Topological Structure Units with Heterogeneous ISLs
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Efficient Topology Design for LEO Mega-Constellation Using Topological Structure Units with Heterogeneous ISLs
Efficient Topology Design for LEO Mega-Constellation Using Topological Structure Units with Heterogeneous ISLs

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Efficient Topology Design for LEO Mega-Constellation Using Topological Structure Units with Heterogeneous ISLs
Efficient Topology Design for LEO Mega-Constellation Using Topological Structure Units with Heterogeneous ISLs
Journal Article

Efficient Topology Design for LEO Mega-Constellation Using Topological Structure Units with Heterogeneous ISLs

2025
Request Book From Autostore and Choose the Collection Method
Overview
With the maturation of reusable launch vehicle technology and satellite mass-production capabilities, global mega-constellation projects have entered a phase of rapid expansion. Inter-satellite networking is a key approach for enhancing constellation performance, as it crucially impacts overall constellation effectiveness. However, existing studies mostly focus on the network layer protocol optimization, with insufficient attention to topological structure design, and fail to fully consider the engineering challenges associated with inter-orbit Inter-Satellite Links (ISLs). To address these issues, this paper proposes a heterogeneous ISL topology architecture for mega-constellations, centered on “stable high-speed laser backbone connection within intra-orbit planes + dynamic and flexible radio network between inter-orbit planes”. First, we clarify the optimization objectives for mega-constellation topological design under this architecture and theoretically prove that the optimization problem is NP-hard. Building on this, we introduce Topological Structure Units (TSUs) and employ a unit reuse strategy to simplify topological design. Furthermore, we propose a TSU-based heterogeneous ISL topological design algorithm. Considering the uneven satellite distribution across latitude zones within the constellation, we further propose a regional TSU-based topological design algorithm. Finally, through simulation experiments in Starlink and GW constellation scenarios, we conduct multi-dimensional verification to demonstrate the effectiveness of the proposed algorithms in reducing end-to-end delay and decreasing ISL hops.