MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Maghemite nanoparticles coated by methacrylamide-based polymer for magnetic particle imaging
Maghemite nanoparticles coated by methacrylamide-based polymer for magnetic particle imaging
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Maghemite nanoparticles coated by methacrylamide-based polymer for magnetic particle imaging
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Maghemite nanoparticles coated by methacrylamide-based polymer for magnetic particle imaging
Maghemite nanoparticles coated by methacrylamide-based polymer for magnetic particle imaging

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Maghemite nanoparticles coated by methacrylamide-based polymer for magnetic particle imaging
Maghemite nanoparticles coated by methacrylamide-based polymer for magnetic particle imaging
Journal Article

Maghemite nanoparticles coated by methacrylamide-based polymer for magnetic particle imaging

2021
Request Book From Autostore and Choose the Collection Method
Overview
A wise selection of tracers is critical for magnetic particle imaging (MPI). Most of the current tracers are based on superparamagnetic iron oxide nanoparticles (SPIONs) with a suitable coating. We prepared maghemite cores (γ-Fe2O3) by coprecipitation of Fe(II) and Fe(III) salts with ammonium hydroxide followed by oxidation with hydrogen peroxide and stabilization as an anionic (γ-Fe2O3⊖) or cationic colloid (γ-Fe2O3⨁). The cores were coated by poly(N-(2-hydroxypropyl)methacrylamide)-co-N-[2-(hydroxyamino)-2-oxo-ethyl]-2-methyl-prop-2-enamide. The particles were characterized by dynamic light scattering, transmission electron microscopy, X-ray diffraction, Mössbauer spectroscopy, tested in vitro in a field-free point MPI scanner, and compared to nanoparticles prepared by oxidation with sodium hypochlorite and to the commercially available Resovist®. The cores had an average diameter of 8.0 nm (γ-Fe2O3⨁) and 8.7 nm (γ-Fe2O3⊖); the hydrodynamic diameter was 88 nm. Zeta potential values for both positively charged (+52 mV) and negatively charged particles (–60 mV) provided for good colloidal stabilization. Spinel structure of maghemite was confirmed by Mössbauer spectroscopy. The uncoated γ-Fe2O3⨁ particles yielded an MPI signal lower (by 16 %) than Resovist; the coated ones reached 88 % of the Resovist signal. Anionic γ-Fe2O3⊖ particles reached a higher (uncoated particles, by 15 %) or comparable (coated ones) signal relative to Resovist with a substantially lower signal dispersion. Control particles prepared by oxidation with sodium hypochlorite scored the weakest results. To conclude, a suitable size, narrow size distribution, and colloidal stability predispose the synthetized particles for use as a tracer for MPI. The anionic particles provided a higher signal with a lower dispersion than commercial tracers.

MBRLCatalogueRelatedBooks