MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Chemical probes of quorum sensing: from compound development to biological discovery
Chemical probes of quorum sensing: from compound development to biological discovery
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Chemical probes of quorum sensing: from compound development to biological discovery
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Chemical probes of quorum sensing: from compound development to biological discovery
Chemical probes of quorum sensing: from compound development to biological discovery

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Chemical probes of quorum sensing: from compound development to biological discovery
Chemical probes of quorum sensing: from compound development to biological discovery
Journal Article

Chemical probes of quorum sensing: from compound development to biological discovery

2016
Request Book From Autostore and Choose the Collection Method
Overview
Bacteria can utilize chemical signals to coordinate the expression of group-beneficial behaviors in a method of cell–cell communication called quorum sensing (QS). The discovery that QS controls the production of virulence factors and biofilm formation in many common pathogens has driven an explosion of research aimed at both deepening our fundamental understanding of these regulatory networks and developing chemical agents that can attenuate QS signaling. The inherently chemical nature of QS makes studying these pathways with small molecule tools a complementary approach to traditional microbiology techniques. Indeed, chemical tools are beginning to yield new insights into QS regulation and provide novel strategies to inhibit QS. Here, we review the most recent advances in the development of chemical probes of QS systems in Gram-negative bacteria, with an emphasis on the opportunistic pathogen Pseudomonas aeruginosa. We first describe reports of novel small molecule modulators of QS receptors and QS signal synthases. Next, in several case studies, we showcase how chemical tools have been deployed to reveal new knowledge of QS biology and outline lessons for how researchers might best target QS to combat bacterial virulence. To close, we detail the outstanding challenges in the field and suggest strategies to overcome these issues. We describe the development and application of novel chemical tools to interrogate bacterial quorum sensing pathways—with a particular focus on the Gram-negative pathogen Pseudomonas aeruginosa—and outline several future challenges for this approach. Graphical Abstract Figure. We describe the development and application of novel chemical tools to interrogate bacterial quorum sensing pathways—with a particular focus on the Gram-negative pathogen Pseudomonas aeruginosa—and outline several future challenges for this approach.