MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Unconventional edge states in a two-leg ladder
Unconventional edge states in a two-leg ladder
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Unconventional edge states in a two-leg ladder
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Unconventional edge states in a two-leg ladder
Unconventional edge states in a two-leg ladder

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Unconventional edge states in a two-leg ladder
Unconventional edge states in a two-leg ladder
Journal Article

Unconventional edge states in a two-leg ladder

2024
Request Book From Autostore and Choose the Collection Method
Overview
Some popular mechanisms for restricting the diffusion of waves include introducing disorder (to provoke Anderson localization) and engineering topologically non-trivial phases (to allow for topological edge states to form). However, other methods for inducing somewhat localized states in elementary lattice models have been historically much less studied. Here we show how edge states can emerge within a simple two-leg ladder of coupled harmonic oscillators, where it is important to include interactions beyond those at the nearest neighbor range. Remarkably, depending upon the interplay between the coupling strength along the rungs of the ladder and the next-nearest neighbor coupling strength along one side of the ladder, edge states can indeed appear at particular energies. In a wonderful manifestation of a type of bulk-edge correspondence, these edge state energies correspond to the quantum number for which additional stationary points appear in the continuum bandstructure of the equivalent problem studied with periodic boundary conditions. Our theoretical results are relevant to a swathe of classical or quantum lattice model simulators, such that the proposed edge states may be useful for applications including waveguiding in metamaterials and quantum transport.