MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Self-operation and low-carbon scheduling optimization of solar thermal power plants with thermal storage systems
Self-operation and low-carbon scheduling optimization of solar thermal power plants with thermal storage systems
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Self-operation and low-carbon scheduling optimization of solar thermal power plants with thermal storage systems
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Self-operation and low-carbon scheduling optimization of solar thermal power plants with thermal storage systems
Self-operation and low-carbon scheduling optimization of solar thermal power plants with thermal storage systems

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Self-operation and low-carbon scheduling optimization of solar thermal power plants with thermal storage systems
Self-operation and low-carbon scheduling optimization of solar thermal power plants with thermal storage systems
Journal Article

Self-operation and low-carbon scheduling optimization of solar thermal power plants with thermal storage systems

2024
Request Book From Autostore and Choose the Collection Method
Overview
Photo thermal power generation, as a renewable energy technology, has broad development prospects. However, the operation and scheduling of photo thermal power plants rarely consider their internal structure and energy flow characteristics. Therefore, this study explains the structure of a solar thermal power plant with a thermal storage system and analyzes its main energy flow modes to establish a self-operation and low-carbon scheduling optimization model for the solar thermal power plant. The simulation results of the example showed that for the self-operating model oriented towards power generation planning and peak valley electricity prices, the existence of a thermal storage system could improve the power generation capacity and revenue of the photovoltaic power plant. For example, when the capacity of the thermal storage system was greater than 6 h, the penalty for insufficient power generation in the simulation result was 0 $, and the maximum increase in revenue reached 84.9% as the capacity of the thermal storage system increased. In addition, when the capacity of the thermal storage system increased from 0 to 8 h, the comprehensive operating cost decreased from 1635.2 k $ to 1224.6 k $, and the carbon emissions decreased from 26.4 × 10 3  ton to 22.1 × 10 3  ton. Compared with the existing literature, this study provides a more comprehensive and systematic solution through detailed energy flow analysis and optimization model. The research has practical and far-reaching significance for promoting the development of clean energy technology, improving the sustainable utilization of renewable energy, and optimizing the overall performance of the energy system.