MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Notes on flat-space limit of AdS/CFT
Notes on flat-space limit of AdS/CFT
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Notes on flat-space limit of AdS/CFT
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Notes on flat-space limit of AdS/CFT
Notes on flat-space limit of AdS/CFT

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Notes on flat-space limit of AdS/CFT
Notes on flat-space limit of AdS/CFT
Journal Article

Notes on flat-space limit of AdS/CFT

2021
Request Book From Autostore and Choose the Collection Method
Overview
A bstract Different frameworks exist to describe the flat-space limit of AdS/CFT, include momentum space, Mellin space, coordinate space, and partial-wave expansion. We explain the origin of momentum space as the smearing kernel in Poincare AdS, while the origin of latter three is the smearing kernel in global AdS. In Mellin space, we find a Mellin formula that unifies massless and massive flat-space limit, which can be transformed to coordinate space and partial-wave expansion. Furthermore, we also manage to transform momentum space to smearing kernel in global AdS, connecting all existed frameworks. Finally, we go beyond scalar and verify that VV O maps to photon-photon-massive amplitudes.