MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Semi-analytical Footprint Model Compliant with Arbitrary Atmospheric Stratification: Application to Monin–Obukhov Profiles
Semi-analytical Footprint Model Compliant with Arbitrary Atmospheric Stratification: Application to Monin–Obukhov Profiles
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Semi-analytical Footprint Model Compliant with Arbitrary Atmospheric Stratification: Application to Monin–Obukhov Profiles
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Semi-analytical Footprint Model Compliant with Arbitrary Atmospheric Stratification: Application to Monin–Obukhov Profiles
Semi-analytical Footprint Model Compliant with Arbitrary Atmospheric Stratification: Application to Monin–Obukhov Profiles

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Semi-analytical Footprint Model Compliant with Arbitrary Atmospheric Stratification: Application to Monin–Obukhov Profiles
Semi-analytical Footprint Model Compliant with Arbitrary Atmospheric Stratification: Application to Monin–Obukhov Profiles
Journal Article

Semi-analytical Footprint Model Compliant with Arbitrary Atmospheric Stratification: Application to Monin–Obukhov Profiles

2023
Request Book From Autostore and Choose the Collection Method
Overview
A new model is proposed for the so-called scalar footprint and flux footprint in the atmospheric boundary layer. The underlying semi-analytical model allows computing the scalar concentration and flux fields related to turbulent diffusion of heat, water-vapor or to the dispersion of any scalar (e.g. passive pollutant) in the framework of K-theory. It offers improved capabilities regarding the representation of the gradual stratification in the boundary layer. In this model, the boundary layer is split in a series of sublayers in which the aerodynamic inertivity (a compound parameter aggregating wind-speed and eddy-diffusivity) is approximated by a sum of two power-law functions of a new vertical scale corresponding to the height-dependent downwind extension of the plume. This multilayer approach allows fitting with vanishing error any boundary-layer stratification, in particular those described by the Monin–Obukhov similarity theory (MOST) in the surface layer, while keeping the computation time of the footprint to low values. As a complement, a fully analytical surrogate model is presented for practical applications. For MOST profiles, the flux (resp. concentration) footprint is, to a RMS difference less than 1% (resp. 1.2%), equal (resp. equal to a constant multiplicative factor) to the inverse Gamma distribution. The optimal parameters of this distribution were evaluated for a broad range of atmospheric conditions and height. Regression formulas were also provided to compute the crosswind-integrated flux footprint distribution easily and with less than 1.6% RMS residual error. A comparison with the well-known footprint approximate model by Kormann and Meixner and the one by Hsieh, Katul and Chi has allowed quantifying their performances and limitations.