Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Magnetic properties of sedimentary greigite (Fe3S4): An update
by
Rowan, Christopher J.
, Roberts, Andrew P.
, Chang, Liao
, Florindo, Fabio
, Horng, Chorng-Shern
in
diagenesis
/ greigite
/ magnetic properties
/ rock magnetism
2011
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Magnetic properties of sedimentary greigite (Fe3S4): An update
by
Rowan, Christopher J.
, Roberts, Andrew P.
, Chang, Liao
, Florindo, Fabio
, Horng, Chorng-Shern
in
diagenesis
/ greigite
/ magnetic properties
/ rock magnetism
2011
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Magnetic properties of sedimentary greigite (Fe3S4): An update
Journal Article
Magnetic properties of sedimentary greigite (Fe3S4): An update
2011
Request Book From Autostore
and Choose the Collection Method
Overview
Greigite (Fe3S4) is an authigenic ferrimagnetic mineral that grows as a precursor to pyrite during early diagenetic sedimentary sulfate reduction. It can also grow at any time when dissolved iron and sulfide are available during diagenesis. Greigite is important in paleomagnetic, environmental, biological, biogeochemical, tectonic, and industrial processes. Much recent progress has been made in understanding its magnetic properties. Greigite is an inverse spinel and a collinear ferrimagnet with antiferromagnetic coupling between iron in octahedral and tetrahedral sites. The crystallographic c axis is the easy axis of magnetization, with magnetic properties dominated by magnetocrystalline anisotropy. Robust empirical estimates of the saturation magnetization, anisotropy constant, and exchange constant for greigite have been obtained recently for the first time, and the first robust estimate of the low‐field magnetic susceptibility is reported here. The Curie temperature of greigite remains unknown but must exceed 350°C. Greigite lacks a low‐temperature magnetic transition. On the basis of preliminary micromagnetic modeling, the size range for stable single domain behavior is 17–200 nm for cubic crystals and 17–500 nm for octahedral crystals. Gradual variation in magnetic properties is observed through the pseudo‐single‐domain size range. We systematically document the known magnetic properties of greigite (at high, ambient, and low temperatures and with alternating and direct fields) and illustrate how grain size variations affect magnetic properties. Recognition of this range of magnetic properties will aid identification and constrain interpretation of magnetic signals carried by greigite, which is increasingly proving to be environmentally important and responsible for complex paleomagnetic records, including widespread remagnetizations.
Publisher
Blackwell Publishing Ltd
Subject
MBRLCatalogueRelatedBooks
Related Items
Related Items
We currently cannot retrieve any items related to this title. Kindly check back at a later time.
This website uses cookies to ensure you get the best experience on our website.