Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Automatic detection of ionospheric Alfvén resonances using signal and image processing techniques
by
Beggan, C. D.
2014
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Automatic detection of ionospheric Alfvén resonances using signal and image processing techniques
by
Beggan, C. D.
2014
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Automatic detection of ionospheric Alfvén resonances using signal and image processing techniques
Journal Article
Automatic detection of ionospheric Alfvén resonances using signal and image processing techniques
2014
Request Book From Autostore
and Choose the Collection Method
Overview
Induction coils permit the measurement of small and very rapid changes of the magnetic field. A new set of induction coils in the UK (at L = 3.2) record magnetic field changes over an effective frequency range of 0.1–40 Hz, encompassing phenomena such as the Schumann resonances, magnetospheric pulsations and ionospheric Alfvén resonances (IARs). The IARs typically manifest themselves as a series of spectral resonance structures (SRSs) within the 1–10 Hz frequency range, usually appearing as fine bands or fringes in spectrogram plots and occurring almost daily during local night-time, disappearing during the daylight hours. The behaviour of the occurrence in frequency (f) and the difference in frequency between fringes (Δf) varies throughout the year. In order to quantify the daily, seasonal and annual changes of the SRSs, we developed a new method based on signal and image processing techniques to identify the fringes and to quantify the values of f, Δf and other relevant parameters in the data set. The technique is relatively robust to noise though requires tuning of threshold parameters. We analyse 18 months of induction coil data to demonstrate the utility of the method.
Publisher
Copernicus Publications
MBRLCatalogueRelatedBooks
Related Items
Related Items
We currently cannot retrieve any items related to this title. Kindly check back at a later time.
This website uses cookies to ensure you get the best experience on our website.