MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Robust inequality comparisons
Robust inequality comparisons
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Robust inequality comparisons
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Robust inequality comparisons
Robust inequality comparisons

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Robust inequality comparisons
Journal Article

Robust inequality comparisons

2011
Request Book From Autostore and Choose the Collection Method
Overview
This paper is concerned with the problem of ranking Lorenz curves in situations where the Lorenz curves intersect and no unambiguous ranking can be attained without introducing weaker ranking criteria than first-degree Lorenz dominance. To deal with such situations, Aaberge (Soc Choice Welf 33:235–259, 2009 ) introduced two alternative sequences of nested dominance criteria for Lorenz curves, which proved to characterize two separate systems of nested subfamilies of inequality measures. This paper uses the obtained characterization results to arrange the members of two different generalized Gini families of inequality measures into subfamilies according to their relationship to Lorenz dominance of various degrees. Since the various criteria of higher degree Lorenz dominance provide convenient computational methods, these results can be used to identify the largest subfamily of the generalized Gini families, and thus the least restrictive social preferences, required to reach unambiguous ranking of a set of Lorenz curves. We further show that the weight-functions of the members of the generalized Gini families offer intuitive interpretations of higher degree Lorenz dominance, which generally has been viewed as difficult to interpret because they involve assumptions about third and higher derivatives. To demonstrate the usefulness of these methods for empirical applications, we examine the time trend in income and earnings inequality of Norwegian males during the period 1967–2005.