MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Transmission of vertical vibration through a seat cushion at the seat pan: Effect of foam physical properties during different excitation magnitudes
Transmission of vertical vibration through a seat cushion at the seat pan: Effect of foam physical properties during different excitation magnitudes
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Transmission of vertical vibration through a seat cushion at the seat pan: Effect of foam physical properties during different excitation magnitudes
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Transmission of vertical vibration through a seat cushion at the seat pan: Effect of foam physical properties during different excitation magnitudes
Transmission of vertical vibration through a seat cushion at the seat pan: Effect of foam physical properties during different excitation magnitudes

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Transmission of vertical vibration through a seat cushion at the seat pan: Effect of foam physical properties during different excitation magnitudes
Transmission of vertical vibration through a seat cushion at the seat pan: Effect of foam physical properties during different excitation magnitudes
Journal Article

Transmission of vertical vibration through a seat cushion at the seat pan: Effect of foam physical properties during different excitation magnitudes

2024
Request Book From Autostore and Choose the Collection Method
Overview
The vibration characteristics of car seats directly influence the ride comfort. Polyurethane foam is the key part of a seat, and its physical parameters have an important impact on the seat. In this study, the influence of the foam thickness and foam hardness on the vibration characteristics of seat cushion with different excitation magnitudes was investigated by using transmissibility and seat effective amplitude transmissibility (SEAT) value. First, vibration tests were carried out at a vertical vibration simulator with width-limited white noise vibration frequencies from 0.5 to 20 Hz with root-mean-square (r.m.s.) values of 0.4, 0.8, and 1.2 m/s2, the acceleration at the platform and the body-foam interfaces were measured to calculate the transmissibility, and the influence of the foam physical properties on the transmissibility was analyzed. Then, the SEAT value was introduced to assess the vibration isolation efficiency of the foam cushion, and the influence of the foam physical properties of the foam cushion on the vibration isolation efficiency was analyzed. With increasing thickness of the foam and decreasing hardness of the foam at the seat pan, the peak transmissibility increased and the resonance frequency decreased. The SEAT values show that increasing the foam thickness is beneficial to the improvement of the vibration isolation efficiency of the seat, but there is a diminishing return; the combination of physical parameters of low hardness and high thickness could make the vibration isolation performance of the seat better. In addition, the nonlinearity of human-seat system during different vibration magnitude was found.
Publisher
SAGE Publications,Sage Publications Ltd,SAGE Publishing