MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Biologically Targeted Radiation Therapy: Incorporating Patient-Specific Hypoxia Data Derived from Quantitative Magnetic Resonance Imaging
Biologically Targeted Radiation Therapy: Incorporating Patient-Specific Hypoxia Data Derived from Quantitative Magnetic Resonance Imaging
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Biologically Targeted Radiation Therapy: Incorporating Patient-Specific Hypoxia Data Derived from Quantitative Magnetic Resonance Imaging
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Biologically Targeted Radiation Therapy: Incorporating Patient-Specific Hypoxia Data Derived from Quantitative Magnetic Resonance Imaging
Biologically Targeted Radiation Therapy: Incorporating Patient-Specific Hypoxia Data Derived from Quantitative Magnetic Resonance Imaging

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Biologically Targeted Radiation Therapy: Incorporating Patient-Specific Hypoxia Data Derived from Quantitative Magnetic Resonance Imaging
Biologically Targeted Radiation Therapy: Incorporating Patient-Specific Hypoxia Data Derived from Quantitative Magnetic Resonance Imaging
Journal Article

Biologically Targeted Radiation Therapy: Incorporating Patient-Specific Hypoxia Data Derived from Quantitative Magnetic Resonance Imaging

2021
Request Book From Autostore and Choose the Collection Method
Overview
Purpose: Hypoxia has been linked to radioresistance. Strategies to safely dose escalate dominant intraprostatic lesions have shown promising results, but further dose escalation to overcome the effects of hypoxia require a novel approach to constrain the dose in normal tissue.to safe levels. In this study, we demonstrate a biologically targeted radiotherapy (BiRT) approach that can utilise multiparametric magnetic resonance imaging (mpMRI) to target hypoxia for favourable treatment outcomes. Methods: mpMRI-derived tumour biology maps, developed via a radiogenomics study, were used to generate individualised, hypoxia-targeting prostate IMRT plans using an ultra- hypofractionation schedule. The spatial distribution of mpMRI textural features associated with hypoxia-related genetic profiles was used as a surrogate of tumour hypoxia. The effectiveness of the proposed approach was assessed by quantifying the potential benefit of a general focal boost approach on tumour control probability, and also by comparing the dose to organs at risk (OARs) with hypoxia-guided focal dose escalation (DE) plans generated for five patients. Results: Applying an appropriately guided focal boost can greatly mitigate the impact of hypoxia. Statistically significant reductions in rectal and bladder dose were observed for hypoxia-targeting, biologically optimised plans compared to isoeffective focal DE plans. Conclusion: Results of this study suggest the use of mpMRI for voxel-level targeting of hypoxia, along with biological optimisation, can provide a mechanism for guiding focal DE that is considerably more efficient than application of a general, dose-based optimisation, focal boost.